簡易檢索 / 詳目顯示

研究生: 詹晴堯
Chang, Ching-Yao
論文名稱: 利用應變記憶技術之單軸伸張應變互補式場效電晶體的電特性對於溫度相依關係的研究
Temperature Dependence of Electrical Characteristic on the Uniaxial Tensile Strained CMOSFETs by Using Stress Memorization Technique (SMT)
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 117
中文關鍵詞: 應變記憶技術互補式場效電晶體高溫退化實驗低頻雜訊
外文關鍵詞: Stress Memorization Technique (SMT), CMOSFET, High temperature degradation, Low-frequency 1/f noise
相關次數: 點閱:119下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是藉由量測應用應變記憶技術(Stress Memorization Technique, SMT)製作之金氧半場效電晶體在高溫下的各項直流參數,來探討應變矽元件與溫度的相依關係。當元件操作在高溫下,使用了應變記憶技術(SMT)的互補式場效電晶體中,各個特性參數的退化現象做分析,發現由於應變記憶技術引致之伸張應力有效地轉移至N型金氧半場效電晶體的通道內,使得N型金氧半場效電晶體能有較好的效能之外,在高溫下退化的情況也被抑制減緩。另外一方面,P型金氧半場效電晶體雖然在室溫的環境下並不會受到應變記憶技術的影響退化,但隨著溫度的上升元件的退化情況也益加嚴重。
    此外,應變矽N型金氧半場效電晶體低頻雜訊(low-frequency noise, 1/f noise)與溫度的相依關係也同時被探討。首先隨著溫度增加,應變矽N型金氧半場效電晶體的低頻雜訊仍然是由載子數變動理論(carrier-number fluctuation)以及載子遷移率變動理論(mobility fluctuation)所同時主導的混合機制;而藉由從低頻雜訊及電荷幫浦量測(charge pumping measure)結果當中萃取出來的胡格常數(Hooge parameter)及界面能態(interface state)更可證實,伸張應力使得通道中電子遷移率提升並同時降低散射,進而使得應用應變記憶技術之N型金氧半場效電晶體在高溫底下,低頻雜訊的特性獲得的改善。

    In this work, temperature dependence of electrical characteristics of strained CMOSFETs combined with stress memorization technique (SMT) process is investigated through the analysis of DC parameters measured at high temperature. For nMOSFETs, it can be found that the device performance is improved and less degradation at high temperature due to SMT process-induced uniaxial tensile on channel, indicating the intrinsic benefits of tensile stress for device operating at high temperature. On the other hand, for pMOSFETs, the degradation in DC characteristics is observed as temperature increased, implying the influence from SMT process becomes larger at high temperature.
    In addition, the low-frequency (1/f) noise behavior at high temperature of nMOSFETs is also presented. First, regardless of temperature, the physical origin of 1/f noise behavior is dominated by a unified model, incorporating both the carrier-number fluctuation and correlated mobility fluctuation. Through the extracted Hooge parameter and interface state from 1/f noise and charge pumping measurements respectively, the improved 1/f noise can be attributed to the tensile stress induced lower carrier scattering and increased mobility at the same time.

    Chinese Abstract i English Abstract ii Acknowledgment iii Contents iv Table Captions vi Figure Captions vii Chapter 1 Introduction 1.1 General Background 1 1.2 Motivation 2 1.3 Organization of the Dissertation 4 Chapter 2 Characteristic of Stress Memorization Technique 2.1 Principle of Strain effects on CMOSFETs 9 2.2 Mechanism of Stress Memorization Technique 11 2.3 Strain Characteristic for CMOSFETs 12 Chapter 3 Device process and Experimental Setup 3.1 Device Process Flow 19 3.1.1 Device Structure Parameters 21 3.2 Experimental Measurement 22 3.2.1 DC Measurement System 22 3.2.2 Low-Frequency (1/f) Noise Measurement System 22 3.2.3 Device Performance Parameters 22 Chapter 4 Temperature dependent of CMOSFETs characteristic with Stress Memorization Technique 4.1 Introduction 27 4.2 Electrical Characteristic of CMOSFETs at Room Temperature 29 4.2.1 I-V Measurement Result and Discussion 29 4.2.2 Strain Effect by Geometric Structure 32 4.3 Electrical Characteristic of CMOSFETs at High Temperature 32 4.3.1 I-V Measurement at High Temperature on nMOSFETs 32 4.3.2 I-V Result Compare with pMOSFETs at High Temperature 34 4.3.3 Mechanism of Strain effect at High Temperature 37 4.4 Conclusions 39 Chapter 5 Temperature dependent of the Low-Frequency (1/f) Noise characteristic in Stress Memorization Technique nMOSFETs 5.1 Introduction 69 5.1.1 Necessity of Low-Frequency (1/f) Noise 69 5.1.2 Organization of Noise 70 5.1.3 Mechanism of Low-Frequency (1/f) Noise 70 5.2 Low-Frequency (1/f) Noise on nMOSFETs at Room Temperature 71 5.3 Low-Frequency (1/f) Noise on nMOSFETs at High Temperature 75 5.4 Conclusion 79 Chapter 6 Summary and Future works 6.1 Summary 100 6.2 Future works 102 Reference 103

    Chapter 1
    [1.1] N. Mohta, and S. E. Thompson, “Mobility Enhancement,” IEEE Circuits and Devices Magazine, Vol. 21, pp. 18–23, 2005.
    [1.2] S. Takagi, T. Irisawa, T. Tezuka, T. Numata, S. Nakaharai, N. Hirashita, Y. Moriyama, K. Usuda, E. Toyoda, S. Dissanayake, M. Shichijo, R. Nakane, S. Sugahara, M. Takenaka, and N. Sugiyama, “Carrier-transport-enhanced channel CMOS for improved power consumption and performance,” IEEE Trans. Electron Devices, Vol. 55, pp. 21–39, 2008.
    [1.3] D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, and H. S. Wong, “Device scaling limits of Si MOSFETs and their application dependencies,” Proc. of the IEEE, Vol. 89, pp. 259–288, 2001.
    [1.4] K. Roy, S. Mukhopadhyay, and H. M. Meimand, “Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits,” Proc. of the IEEE, Vol. 91, pp. 305–327, 2003.
    [1.5] H. Shang, M. M. Frank, E. P. Gusev, J. O. Chu, S. W. Bedell, K. W. Guarini, and M. Leong, “Germanium channel MOSFETs: opportunities and challenges,” IBM J. Res. and Dev., Vol. 50, pp. 377–386, 2006.
    [1.6] J. S. Goo, Q. Xiang, Y. Takamura, F. Arasnia, E. N. Paton, P. Besser, J. Pan, and M. R. Lin, “Band offset induced threshold variation in strained-Si nMOSFETs,” IEEE Electron Device Lett., Vol. 24, pp. 568–570, 2003.
    [1.7] The International Technology Roadmap for Semiconductors (ITRS), Semiconductor Ind. Assoc. 2009.
    [1.8] J. L. Hoyt, H. M. Nayfeh, S. Eguchi, I. Aberg, G. Xia, T. Drake, E. A. Fitzgerald, and D. A. Antoniadis, “Strained silicon MOSFET technology,” IEDM Tech. Dig., pp. 23–26, 2002.
    [1.9] H. C. Wang, Y. P. Wang, S. J. Chen, C. H. Ge, S. M. Ting, J. Y. Kung, R. L. Hwang, H. K. Chiu, L. C. Sheu, P. Y. Tsai, L. G. Yao, S. C. Chen, H. J. Tao, Y. C. Yeo, W. C. Lee, and C. Hu, “Substrate-Strained Silicon Technology: Process Integration,” IEDM Tech. Dig., pp. 61–64, 2003.
    [1.10] Y. P. Wang, S. L. Wu and S. J. Chang, “Tradeoff between Short Channel Effect and Mobility in Strained-Si nMOSFETs”, Semicond. Sci. Technol., pp. 1-1, 2006.
    [1.11] S. L. Wu, Y. P. Wang, and S. J. Chang, “Controlled Misfit Dislocation Technology in Strained Silicon MOSFETs”, Semicond. Sci. Technol., pp. 44-47, 2006.
    [1.12] F. Ootsuka, S. Wakahara, K. Ichinose, A. Honzawa, S. Wada, H. Sato, T. Ando, H. Ohta, K. Watanabe, and T. Onai, “A highly dense, high-performance 130 nm node CMOS technology for large scale system-on-a-chip applications,” IEDM Tech. Dig., pp. 575-578, 2000.
    [1.13] A. Shimizu, K. Hachimine, N. Ohki, M. Koguchi, Y. Nonaka, H. Sato, and F. Ootsuka, “Local mechanical-stress control (LMC): a new technique for CMOS-performance enhancement,” IEDM Tech. Dig., pp. 433-436, 2001.
    [1.14] T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T. Hoffiann', K. Johnson', C. Kenyon, J. Klaus, B. Mclntyre, K. Mistry, A. Murthy, 1. Sandford, M. Silberstein, S. Sivakumar, P. Smith, K. Zawadzki, S. Thompson and M. Bohr, “A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors,” IEDM Tech. Dig., pp. 978-981, 2003.
    [1.15] K. Ota, K. Sugihara, H. Sayama, T. Uchida, H. Oda, T. Eimori, H. Morimoto, and Y. Inoue, “Novel locally strained channel technique for high performance 55nm CMOS,” IEDM Tech. Dig., pp. 27-30, 2002.
    [1.16] C. H. Chen, T. L. Lee, T. H. Hou, C. L. Chen, C. C. Chen, J. W. Hsu, K. L. Cheng, Y. H. Chiu, H. J., Tao, Y. Jin, C. H. Diaz, S. C. Chen, and M. S. Liang, “Stress memorization technique (SMT) by selectively strained-nitride capping for sub-65nm high-performance strained-Si device application,” Symp. VLSI Tech. Dig., pp. 56-57, 2004.
    [1.17] C. Ortolland, P. Morin, C. Chaton, E. Mastromatteo, C. Populaire, S. Orain, F. Leverd, P. Stolk, F. Boeuf, and F. Arnaud, “Stress Memorization Technique (SMT) Optimization for 45nm CMOS,” Symp. VLSI Tech. Dig., pp. 78-79, 2006.
    [1.18] R. Habchi, C. Salame, R. El Bitar, and P. Mialhe , “Switching times variation of MOSFET devices with temperature and high-field stress.”, Microelectronics Journal ,39 , pp.828–831, 2008
    [1.19] C. Ortolland, Y. Okuno, P. Verheyen, C. Kerner, C. Stapelmann ,M. Aoulaiche, N. Horiguchi, and T. Hoffmann , “Stress Memorization Technique—Fundamental Understanding and Low-Cost Integration for Advanced CMOS Technology Using a Nonselective Process.” IEEE Trans. Electron Devices, Vol. 56, NO. 8, Aug. 2009.
    [1.20] T. Y. Lu, C. M. Wang, and T. S. Chaoz “Enhancement of Stress-Memorization Technique on nMOSFETs by Multiple Strain-Gate Engineering”, Electrochem. Solid-State Lett. , 12(1) H4-H6 , 2009.
    [1.21] E. Morifuji, A. Eiho, T. Sanuki, M. Iwai, and F. Matsuoka, “Optimization of Stress Memorization Technique for 45nm Complementary Metal–Oxide–Semiconductor Technology”, Jpn. J. Appl. Phys. 48, 031203, 2009.
    [1.22] T. Miyashita, T. Owada, A. Hatada, Y. Hayami, K. Ookoshi, T. Mori, H. Kurata, and T. Futatsugi , “Physical and Electrical Analysis of the Stress Memorization Technique (SMT) using Poly-Gates and its Optimization for Beyond 45-nm High-Performance Applications”, in IEDM Tech. Dig. , 15-17 p.p 1 - 4 Dec. 2008.
    [1.23] Y. T. Chen, “Investigation on the Performance Improvement and Geometric Effects of Nanoscale CMOS Devices with SMT (Stress Memorization Technique)”, Dissertation of NCKU, 2008.

    Chapter 2
    [2.1] S. I. Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons, “Comparative study of phonon-limited mobility of two-dimensional electrons in strained and unstrained Si metal-oxide-semiconductor field-effect transistors,” Jpn. J. Appl. Phys., Vol. 80, pp.1567–1577, Aug. 1996.
    [2.2] Y. Sun, S. E. Thompson, and T. Nishida, “Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors,” J. Appl. Phys., Vol. 101, pp. 104503–1–22, May 2007.
    [2.3] N. Mohta, and S. E. Thompson, “Mobility Enhancement,” IEEE Circuits and Devices Magazine, Vol. 21, pp. 18–23, Sep. 2005.
    [2.4] K. Uchida, T. Krishnamohan, K. C. Saraswat, and Y. Nishi, “Physical mechanisms of electron mobility enhancement in uniaxial stressed MOSFETs and impact of uniaxial stress engineering in ballistic regime,” in IEDM Tech. Dig., pp. 129–132, 2005.
    [2.5] H. Irie, K. Kita, K. Kyuno, and A. Toriumi, “In-plane mobility anisotropy and universality under uni-axial strains in n- and p-MOS inversion layers on (100), (110), and (111) Si,” in IEDM Tech. Dig., pp. 225–228, 2004.
    [2.6] S. I. Takagi, J. Koga, and A. Toriumi, “Subband structure engineering for performance enhancement of Si MOSFETs,” in IEDM Tech. Dig., pp. 219–222, 1997.
    [2.7] S. E. Thompson, G. Sun, K. Wu, J. Lim, and T. Nishida, “Key differences for process-induced uniaxial vs. substrate-induced biaxial stressed Si and Ge channel MOSFETs,” in IEDM Tech. Dig., pp. 221–224, 2004.
    [2.8] X. Yang, Y. Choi, T. Nishida, and S. E. Thompson, “Gate direct tunneling currents in uniaxial stressed MOSFETs,” in Proc. of Int. EDST, pp. 149–152, 2007.
    [2.9] Y. Kimira, M. Kishi, and T. Katoda, “Effects of elastic stress introduced by a silicon nitride cap on solid-phase crystallization of amorphous silicon,” J. Appl. Phys., Vol. 86, pp. 2278–2280, 1999.
    [2.10] T. Miyashita, T. Owada, A. Hatada, Y. Hayami, K. Ookoshi, T. Mori, H. Kurata, and T. Futatsugi, “Physical and electrical analysis of the stress memorization technique (SMT) using poly-gates and its optimization for beyond 45-nm high-performance applications,” in IEDM Tech. Dig., pp. 1– 4, 2008.
    [2.11] A. Eiho, T. Sanuki, E. Morifuji, T. Iwamoto, G. Sudo, K. Fukasaku, K. Ota, T. Sawada, O. Fuji, H. Nii, M. Togo, K. Ohno, K. Yoshida, H. Tsuda, T. Ito, Y. Shiozaki, N. Fuji, H. Yamazaki, M. Nakazawa, S. Iwasa, S. Muramatsu, K. Nagaoka, M. Iwai, M. Ikeda, M. Saito, H. Naruse, Y. Enomoto, S. Kitano, S. Yamada, K. Imai, N. Nagashima, T. Kuwata, and F. Matsuoka, “Management of Power and Performance with Stress Memorization Technique for 45nm CMOS,” in Symp. VLSI Tech. Dig., pp.218-219, 2007.
    [2.12] A. Wei, M. Wiatr, A. Mowry, A. Gehring, R. Boschke, C. Scott, J. Hoentschel, S. Duenkel, M. Gerhardt, T. Feudel, M. Lenski, F. Wirbeleit, R. Otterbach, R. Callahan, G. Koerner, N. Krumm, D. Greenlaw, M. Raab, and M. Horstmann, “Multiple Stress Memorization In Advanced SOI CMOS Technologies,” in Symp. VLSI Tech. Dig., pp.216-217, 2007.
    [2.13] C. H. Chen, T. L. Lee, T. H. Hou, C. L. Chen, C. C. Chen, J. W. Hsu, K. L. Cheng, Y. H. Chiu, H. J. Tao, Y. Jin, C. H. Diaz, S. C. Chen, and M. S. Liang, “Stress memorization technique (SMT) by selectively strained-nitride capping for sub-65nm high-performance strained-Si device application,” in Symp. VLSI Tech. Dig., pp. 56-57, 2004.
    [2.14] S. Fang, S. S. Tan, J. Yuan, Q. Liang, T. Dyer, R. Robinson, J. Liu, J. J. Kim, B. Zuo, M. Belyansky, J. Yan, Z. Luo, J. Li, Y. Wang, B. Greene, H. Ng, Y. Li, H. Shang, E. Maciejewski, M. Yang, R. Divakaruni, E. Leobandung, and J. Jagannathan, “SMT and enhanced SPT with Recessed SD to Improve CMOS Device Performance,” Solid-State and Integrated-Circuit Technology, pp. 117-120, 2008.
    [2.15] P. Morina, C. Ortollandc, E. Mastromatteoc, C. Chatonb and F. Arnauda, “Mechanisms of stress generation within a polysilicon gate for nMOSFET performance enhancement,” Materials Science and Engineering: B, pp. 215-219, 2005.
    [2.16] V. Chan, K. Rim, M. Ieong, S. Yang, R. Malik, Y. W. Teh, M Yang, and Q. Ouyang, “Strain for CMOS performance Improvement,” in IEEE Custom Integrated Circuits Conference, pp. 667-674, 2005.
    [2.17] T. Komoda, A. Oishi, T. Sanuki, K. Kasai, H. Yoshimura, K. Ohno, A. Iwai, M. Saito, F.Matsuoka, N. Nagashima, and T. Noguchi, “Mobility improvement for 45nm node by combination of optimized stress and channel orientation design,” in IEDM Tech. Dig., pp. 217-220, 2004.

    Chapter 3
    [3.1] C. C. Liao, T. Y. Chiang, M. C. Lin, and T. S. Chao. “Benefit of NMOS by Compressive SiN as Stress Memorization Technique and Its Mechanism” , IEEE Electron Device Lett., Vol. 31, NO. 4, Apr. 2010
    [3.2] K.T. Lee, C. Y. Kang, O. S. Yoo, C. D. Young, G. Bersuker, H. K. Park, J. M. Lee, H. S. Hwang, B. H. Lee, H. D. Lee and Y. H. Jeong ,” A Comparative Study of Reliability and Performance of Strain Engineering using CESL Stressor and Mechanical Strain.” , IEEE CFP08RPS-CDR 46th Annual International Reliability Physics Symposium, Phoenix, 2008.
    [3.3] J. J. Y. Kuo, W. P. N. Chen, and P. Su. “Investigation and Analysis of Mismatching Properties for Nanoscale Strained MOSFETs.” IEEE Trans. Nanotechnology, Vol. 9, NO. 2, Mar. 2010
    [3.4] S. Flachowsky, A. Wei, R. Illgen, T. Herrmann, J. Höntschel, M. Horstmann, W. Klix, and R. Stenzel.”Understanding Strain-Induced Drive-Current Enhancement in Strained-Silicon n-MOSFET and p-MOSFET.” IEEE TRANS. Electron Devices, Vol. 57, NO. 6, JUNE 2010.
    [3.5] H. Irie, K. Kita, K. Kyuno and A. Toriwni. “In-Plane Mobility Anisotropy and Universality Under Uni-axial Strains in n- and p-MOS Inversion Layers on (loo), (110), and (111) Si.”, in IEDM Tech. Dig ,04-225 ,2004.
    [3.6] M. Yang, V. W. C. Chan, K. K. Chan, L. Shi, D. M. Fried, J. H. Stathis, A. I. Chou, E. Gusev, J. A. Ott, L. E. Burns, M. V. Fischetti, and M. Ieong.” Hybrid-Orientation Technology (HOT): Opportunities and Challenges.”, IEEE Trans. Electron Devices, Vol. 53, NO. 5, May. 2006.
    [3.7] Q. Ouyang, M. Yang, J. Holt, S. Panda, H. Chen, H. Utomo, M. Fischetti, N. Rovedo, J. Li, N. Klymko, H. Wildman, T. Kanarsky, G. Costrini, D. M. Fried, A. Bryant, J. A. Ott, M. Ieong and C. Y. Sung. ” Investigation of CMOS Devices with Embedded SiGe Source/Drain on Hybrid Orientation Substrates.”, in Symp. VLSI Tech, 2005.
    [3.8] C. Y. Sung, H. Yin, H. Y. Ng, K. L. Saenger, V. Chan, S. W. Crowder, J. Li, J. A. Ott, R. Bendernagel, J. J. Kempisty, V. Ku, H. K. Lee, Z. Luo, A. Madan, R. T. Mo, P. Y. Nguyen, G. Pfeiffer, M. Raccioppo, N. Rovedo, D. Sadana, J. P. de Souza, R. Zhang, Z. Ren and C. H. Wann. ” High Performance CMOS Bulk Technology Using Direct Silicon Bond (DSB) Mixed Crystal Orientation Substrates.” in Symp. VLSI Tech, 2005.
    [3.9] Y. T. Huang, A. Pinto, C. T. Lin, C. H. Hsu, M. Ramin, M. Seacrist, M. Ries, K. Matthews, B. Nguyen, M. Freeman, B. Wilks, C. Stager, C. Johnson, L. Denning, J. Bennett, S. Joshi, S. Chiang, L. W. Cheng, T. H. Lee, M. Ma, O. Cheng, and R. Wise.” PMOSFET Reliability Study for Direct Silicon Bond (DSB) Hybrid Orientation Technology (HOT).”, IEEE Electron Device Lett. ,Vol. 28, NO. 9, Sep. 2007.
    [3.10] T. Satô, Y. Takeishi, H. Hara, and Y. Okamoto, “Mobility Anisotropy of Electrons in Inversion Layers on Oxidized Silicon Surfaces,” Phys Rev. B, pp. 1950-1960, 1997.

    Chapter 4
    [4.1] C. H. Chen, T. L. Lee, T. H. Hou, C. L. Chen, C. C. Chen, J. W. Hsu, K. L. Cheng, Y. H. Chiu, H. J., Tao, Y. Jin, C. H. Diaz, S. C. Chen, and M. S. Liang, “Stress memorization technique (SMT) by selectively strained-nitride capping for sub-65nm high-performance strained-Si device application,” in Symp. VLSI Tech. Dig., pp. 56-57, 2004.
    [4.2] Y. T. Wang,” Investigation on the Performance Improvement and Geometric Effects of Nanoscale CMOS Devices with SMT (Stress Memorization Technique)”, Dissertation of NCKU, 2008.
    [4.3] Y. W. Yi , K. Masu , K. Tsubouchi and N. Mikoshiba, ” Temperature-Scaling Theory for Low-Temperature-Operated MOSFET with Deep-Submicron Channel.”, Jpn. J. Appl. Phys., Vol. 27, No. 10, pp. L1 958-L1 961 , oct. 1988.
    [4.4] K. Chainy, J. H. Huangz, J. Duster, P. K. Kox and C. Huy , “A MOSFET electron mobility model of wide temperature range (77 - 400 K) for IC simulation” , Semicond. Sci. Technol. 12, 355-358 , 1997.
    [4.5] B. Cheng and J. Woo, ”Measurement and Modeling of the n-channel and p-channel MOSFET's Inversion Layer Mobility at Room and Low Temperature Operation” , Journal de Physique IV , Vol.6, 1996.
    [4.6] Y. T. Hou, M. F. Li, Y. Jin, and W. H. Lai, “Direct tunneling hole currents through ultrathin gate oxides in metal-oxide-semiconductor devices,” J. Appl. Phys., Vol. 91, pp. 258-264, Jan. 2002.
    [4.7] S. E. Thompson, P. Packan, and M. Bohr, “MOS scaling: transistor challenges for the 21st century,” Intel Tech. Journal, pp. 1-19, 1998.
    [4.8] X. Yang, J. Lim, G. Sun, K. Wu, T. Nishida, and S. E. Thompson, “Strain-induced changes in the gate tunneling currents in p-channel metal-oxide-semiconductor field-effect transistors,” Appl. Phys. Lett., Vol. 88, pp. 052108-1-3, Jan. 2006.
    [4.9] K. Alam, S. Zaman, M. M. Chowdhury, M. R. Khan, and A. Haque, “Effects of inelastic scattering on direct tunneling gate leakage current in deep submicron metal-oxide-semiconductor transistors,” J. Appl. Phys., Vol. 92, pp. 937–943, Jul.2002.
    [4.10] X. Yang, Y. Choi, T. Nishida, and S. E. Thompson, “Gate direct tunneling currents in uniaxial stressed MOSFETs,” in Proc. of EDST, pp. 149-152, 2007.
    [4.11] S. I. Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons, “Comparative study of phonon-limited mobility of two-dimensional electrons in strained and unstrained Si metal oxide semiconductor field-effect transistors,” J. Appl. Phys., Vol. 80, pp. 1567-1577, Aug. 1996.
    [4.12] T. J. Wang. “Investigation of Uniaxial Strain Technology on the Characteristics of Nanoscale CMOS and Bipolar Transistors “, Dissertation of NCKU, 2008.
    [4.13] S. I. Takagi, J. Koga, and A. Toriumi,” Subband Structure Engineering for Processing-induced Uniaxial vs. Substrate-induced Biaxial Stressed Si and Ge Channel MOSFETs,“ in IEDM. Tech. Dig., pp. 219-222, 1997.
    [4.14] M. N. Tsai, T. C. Chang, P. T. Liu, O. Cheng, and C. T. Huang “Temperature dependence of silicon power MOSFETs switching parameters” , Electrochem. Solid-State Lett. 9(8) G276-G278 , 2006.
    [4.15] J. D. Wiley, “Semiconductors and Semimetals”, Vol. 10, Academic Press, NewYork, 1975.
    [4.16] Y. J. Kuo, T. C. Chang, C. H. Dai, S. C. Chen, J. Lu, S. H. Ho, C. H. Chao, T. F. Young, O. Cheng, and C. T. Huang. ” Temperature-Dependent Biaxial Compressive Strain Effect on p-MOSFETs” Electrochem. Solid-State Lett., 12 (2) H32-H34 , 2009

    Chapter 5
    [5.1] Y. Nemirovsky, I. Brouk, and C. G. Jakobson, “1/f Noise in CMOS Transistors for Analog Applications.” , IEEE Trans. Electron Devices, Vol. 48, NO. 5, May 2001.
    [5.2] Y. P. Wang, “Application of Substrate-Strained Silicon Technology for High-Mobility MOSFETs”, Dissertation of NCKU, 2006.
    [5.3] F. N. Hooge, “l/f Noise Sources.”, IEEE Trans. Electron Devices, Vol. 41, NO. 11, Nov. 1994.
    [5.4] G. Reimbold, “Modified 1/ f Trapping Noise Theory and Experiments in MOS Transistors Biased from Weak to Strong lnversiorl-Influence of Interface States.” IEEE Trans. Electron Devices, Vol. ED-31, NO. 9, Sep. 1984.
    [5.5] K. K. Hung, P. K. Ko, C. M. Hu, Y. C. Cheng. “A Unified Model for the Flicker Noise in Metal-Oxide-Semiconductor Field-Effect Transistors”, IEEE Trans. Electron Devices, Vol. 37. NO. 3. Mar. 1990.
    [5.6] G. Ghibaudo, T. Boutchacha, Electrical noise and RTS fluctuations in advanced CMOS devices”, Microelectronics Reliability Vol.42, pp. 573-582, 2002.
    [5.7] P. C. Huang , S. L. Wu, S. J. Chang, Y. T. Huang, C. T. Lin, M. Mac, O. Cheng,” Electrical characteristics of nMOSFETs fabricated on hybrid orientation substrate with amorphization/templated recrystallization method”, Microelectronics Reliability, Vol.50 , pp. 662-665, 2010.
    [5.8] Y. T. Huang, S. L. Wu, S. J. Chang, , C. W. Kuo, Y. T. Chen, Y. C. Cheng, and O. Cheng,” Dependence of DC Parameters on Layout and Low-Frequency Noise Behavior in Strained-Si nMOSFETs Fabricated by Stress-Memorization Technique.”, IEEE Electron Device Lett., Vol. 31, NO. 5, May 2010.
    [5.9] C. W. Kuo, S. L. Wu, S. J. Chang, Y. T. Huang, Y. C. Cheng, and O. Cheng,” Impact of stress-memorization technique induced-tensile strain on low frequency noise in n-channel metal-oxide-semiconductor transistors”, Appl. Phys. Lett. Vol. 97, 2010.
    [5.10] L. K. J. Vandamme, “Noise as a Diagnostic Tool for Quality and Reliability of Electronic Devices.”, IEEE Trans. Electron Devices. Vol. 41, NO. 11, Nov. 1994.
    [5.11] L. K. J. Vandamme, X. Li, and D. Rigaud, “l/f Noise in MOS Devices,Mobility or Number Fluctuations?”, IEEE Trans. Electron Devices, Vol. 41, NO. 11, Nov. 1994
    [5.12] L. K. J. Vandamme and F. N. Hooge, “What Do We Certainly Know About 1/f Noise in MOSTs?” , IEEE Trans. Electron Devices, Vol. 55, NO. 11, Nov. 2008.
    [5.13] F. Crupi, P. Srinivasan, P. Magnone, E. Simoen, C. Pace, D. Misra, and C. Claeys, “Impact of the Interfacial Layer on the Low-Frequency Noise (1/f) Behavior of MOSFETsWith Advanced Gate Stacks”, IEEE Trans. Electron Devices, Vol. 27, NO. 8, Aug. 2006.
    [5.14] J. J. Y. Kuo, W. P. N. Chen, and P. Su,” Impact of Uniaxial Strain on Low-Frequency Noise in Nanoscale PMOSFETs”, IEEE Electron Device Lett. Vol. 30, NO. 6, Jun. 2009.
    [5.15] S. S. Chung, S. J. Chen, C. K. Yang, S. M. Cheng, S. H. Lin, Y. C. Sheng, H. S. Lin, K. T. Hung, D. Y. Wu, T. R. Yew, S. C. Chien, F. T. Liou, and F. Wen, “A novel and direct determination of the interface traps in sub- 100-nm CMOS devices with direct tunneling regime (12 ∼ 16 Å) gate oxide,” in VLSI Symp. Tech. Dig. , pp. 74-75, 2002
    [5.16] V. Dessard, , B. Iñíguez, , S. Adriaensen, and D. Flandre,” SOI n-MOSFET Low-Frequency Noise Measurements and Modeling From Room Temperature Up to 250 C.”, IEEE Trans. Electron Devices. Vol. 49, NO. 7, Jul. 2002.
    [5.17] T. H. Ning and C. T. Sah,” Theory of Scattering of Electrons in a Nondegenerate-Semiconductor-Surface Inversion Layer by Surface-Oxide Charges”, Phys.Rev.B. Vol.6, pp.4605-4613, 1972.
    [5.18] Y. Son, C. K. Baek, , I. S. Han, H. S. Joo, T. G. Goo, O. Yoo, W. Choi, H. H. Ji, H. D. Lee, , and D. M. Kim,” Characterization of Near-Interface Oxide Trap Density in Nitrided Oxides for Nanoscale MOSFET Applications”, IEEE Trans. Nanotechnology, Vol. 8, NO. 5, Sep. 2009.

    下載圖示 校內:2013-07-14公開
    校外:2013-07-14公開
    QR CODE