| 研究生: |
李昆霖 Li, Kun-Lin |
|---|---|
| 論文名稱: |
1氫-1,2,3-三氮唑分子在二氧化鈦粉末表面上的吸附與反應 Adsorption and Reactions of 1H-1,2,3-Triazole on Powdered TiO2 |
| 指導教授: |
林榮良
Lin, Jong-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 二氧化鈦 、1氫-1,2,3-三氮唑 、傅氏轉換紅外光譜儀 、照光反應 |
| 外文關鍵詞: | TiO2, 1H-1,2,3-triazole, FTIR, photochemical reaction |
| 相關次數: | 點閱:84 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用傅氏轉換紅外光譜儀(Fourier-transform infrared spectroscopy, FT-IR)研究1氫-1,2,3-三氮唑(1H-1,2,3-triazole)分子在二氧化鈦粉末表面上的吸附及反應。於真空環境中,1氫-1,2,3-三氮唑分子在150-250 oC之間三氮唑環(triazole ring)可能破裂,然後可能會以N=N-CH=CH-NH形式鍵結於TiO2表面上,當升溫超過250 oC,N=N-CH=CH-NH結構可能斷N-H鍵及C-H鍵,最後可能是以N=N-C=C-N型態鍵結於TiO2表面上。從400 oC回溫圖譜中,我們推測可能產生CH3CN、NH3及bridging η2(N,O)-CH3CONH(a)結構。於有氧環境中,除了觀察到CO2的生成外,其熱反應途徑與真空環境下類似。1氫-1,2,3-三氮唑分子在二氧化鈦上的有氧照光反應(325 nm)沒有分解反應的發生。
Fourier-transform infrared spectroscopy (FTIR) has been employed to study the thermal decomposition and photochemical reactions of 1H-1,2,3-triazole on TiO2. Under vacuum, the decomposition of 1H-1,2,3-triazole on TiO2 likely occurs between 150 oC-250 oC and leads to the formation of ring-opening intermediates such as N=N-CH=CH-NH. When the surface temperature is increased above 250 oC, N-H and C-H bonds of these intermediates may dissociate through dehydrogenation and bond breakage of C-N, C-C and N-N, finally leading to the formation of CH3CN, NH3 and bridging η2(N,O)-CH3CONH intermediate. In the presence of O2, the route of thermal decomposition of 1H-1,2,3-triazole on TiO2 was similar to that under vacuum, except for the formation of additional CO2. The TiO2-mediated photochemical reaction of 1H-1,2,3-triazole at 325 nm is negligible.
[1] W. Stillwell, An Introduction to Biological Membranes: From Bilayers to Rafts, Elsevier/Academic Press 2013.
[2] P. M. D. Collins, The Pivotal Role of Platinum in the Discovery of Catalysis, Platinum Metals Review, 30 (1986) 141-146.
[3] A. J. B. Robertson, The Early History of Catalysis, Platinum Metals Review, 19 (1975) 64-69.
[4] E. Cook, Peregrine Phillips, the Inventor of the Contact Process for Sulphuric acid, Nature, 117 (1926) 419-421.
[5] M. E. Davis, R. J. Davis, Fundamentals of Chemical Reaction Engineering, Dover Publications 2013.
[6] L. Lloyd, Handbook of Industrial Catalysts, Springer 2011.
[7] G. A. Somorjai, Y. Li, Introduction to Surface Chemistry and Catalysis, John Wiley & Sons 2010.
[8] J. C. Vickerman, I. Gilmore, Surface Analysis: The Principal Techniques, Wiley 2011.
[9] L. B. Hunt, Sir Humphry Davy on Platinum, Platinum Metals Review, 23 (1979) 21-31.
[10] P. Atkins, J. de Paula, Atkins' Physical Chemistry, OUP Oxford 2010.
[11] M. Landmann, E. Rauls, W.G. Schmidt, The Electronic Structure and Optical Response of Rutile, Anatase and Brookite TiO2, Journal of physics. Condensed matter : An Institute of Physics journal, 24 (2012) 195503.
[12] J. Augustynski, The Role of the Surface Intermediates in the Photoelectrochemical Behaviour of Anatase and Rutile TiO2, Electrochimica Acta, 38 (1993) 43-46.
[13] E. Stoyanov, F. Langenhorst, G. Steinle-Neumann, The Effect of Valence State and Site Geometry on Ti L3,2 and O K Electron Energy-loss Spectra of TixOy phases, American Mineralogist, 92 (2007) 577-586.
[14] J. K. Burdett, T. Hughbanks, G.J. Miller, J. W. Richardson, J. V. Smith, Structural-electronic Relationships in Inorganic Solids: Powder Neutron Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxide at 15 and 295 K, Journal of the American Chemical Society, 109 (1987) 3639-3646.
[15] B. Ohtani, O. O. Prieto-Mahaney, D. Li, R. Abe, What is Degussa (Evonik) P25? Crystalline Composition Analysis, Reconstruction From Isolated Pure Particles and Photocatalytic Activity Test, Journal of Photochemistry and Photobiology A: Chemistry, 216 (2010) 179-182.
[16] T. Ohno, K. Sarukawa, K. Tokieda, M. Matsumura, Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases, Journal of Catalysis, 203 (2001) 82-86.
[17] J. Pan, G. Liu, G. Q. Lu, H. M. Cheng, On the True Photoreactivity Order of {001}, {010}, and {101} Facets of Anatase TiO2 Crystals, Angewandte Chemie, 50 (2011) 2133-2137.
[18] Z. Zhang, C.-C. Wang, R. Zakaria, J. Y. Ying, Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts, The Journal of Physical Chemistry B, 102 (1998) 10871-10878.
[19] D. Sarkar, C. K. Ghosh, K. K. Chattopadhyay, Morphology Control of Rutile TiO2 Hierarchical Architectures and Their Excellent Field Emission Properties, CrystEngComm, 14 (2012) 2683-2690.
[20] J.-Y. Liao, J.-W. He, H. Xu, D.-B. Kuang, C.-Y. Su, Effect of TiO2 Morphology on Photovoltaic Performance of Dye-sensitized Solar Cells: Nanoparticles, Nanofibers, Hierarchical Spheres and Ellipsoid Spheres, Journal of Materials Chemistry, 22 (2012) 7910-7918.
[21] W. Zhou, G. Du, P. Hu, G. Li, D. Wang, H. Liu, J. Wang, R. I. Boughton, D. Liu, H. Jiang, Nanoheterostructures on TiO2 Nanobelts Achieved by Acid Hydrothermal Method with Enhanced Photocatalytic and Gas Sensitive Performance, Journal of Materials Chemistry, 21 (2011) 7937-7945.
[22] M. Lazzeri, A. Vittadini, A. Selloni, Structure and Energetics of StoichiometricTiO2 Anatase Surfaces, Physical Review B, 63 (2001) 155409.
[23] L. Ye, J. Mao, J. Liu, Z. Jiang, T. Peng, L. Zan, Synthesis of Anatase TiO2 Nanocrystals with {101}, {001} or {010} Single Facets of 90% Level Exposure and Liquid-phase Photocatalytic Reduction and Oxidation Activity Orders, Journal of Materials Chemistry A, 1 (2013) 10532-10537.
[24] J. Pan, X. Wu, L. Wang, G. Liu, G.Q. Lu, H.-M. Cheng, Synthesis of Anatase TiO2 Rods with Dominant Reactive {010} Facets for the Photoreduction of CO2 to CH4 and Use in Dye-sensitized Solar Cells, Chemical Communications, 47 (2011) 8361-8363.
[25] I. Jang, K. Song, J.-H. Park, S.-G. Oh, Enhancement of Dye Adsorption on TiO2 Surface through Hydroxylation Process for Dye-sensitized Solar Cells, Bulletin of the Korean Chemical Society, 34 (2013) 2883-2888.
[26] T. K. Le, D. Flahaut, H. Martinez, T. Pigot, H. K. H. Nguyen, T. K. X. Huynh, Surface Fluorination of Single-phase TiO2 by Thermal Shock Method for Enhanced UV and Visible Light Induced Photocatalytic Activity, Applied Catalysis B: Environmental, 144 (2014) 1-11.
[27] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 238 (1972) 37-38.
[28] A. J. Bard, Photoelectrochemistry, Science, 207 (1980) 139-144.
[29] B. O'Regan, M. Gratzel, A Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films, Nature, 353 (1991) 737-740.
[30] K. Tennakone, G. R. R. A. Kumara, A. R. Kumarasinghe, K. G. U. Wijayantha, P. M. Sirimanne, A dye-sensitized Nano-porous Solid-state Photovoltaic Cell, Semiconductor Science and Technology, 10 (1995) 1689.
[31] A. Fujishima, X. Zhang, D.A. Tryk, TiO2 Photocatalysis and Related Surface Phenomena, Surface Science Reports, 63 (2008) 515-582.
[32] A. L. Linsebigler, G. Lu, J. T. Yates, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chemical Reviews, 95 (1995) 735-758.
[33] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, A Comprehensive Review of ZnO Materials and Devices, Journal of Applied Physics, 98 (2005) 041301.
[34] J. Nanda, B. A. Kuruvilla, D. D. Sarma, Photoelectron Spectroscopic Study of CdS Nanocrystallites, Physical Review B, 59 (1999) 7473-7479.
[35] J.-L. Lin, Principles and Applications of Photocatalysis on TiO2, Journal of the Chinese Chemical Society, 60 (2002) 457-461.
[36] M. A. Fox, M. T. Dulay, Heterogeneous Photocatalysis, Chemical Review, 83 (1995) 341-357.
[37] A. Wold, Photocatalytic Properties of TiO2, Chemistry of Materials, 5 (1993) 280-283.
[38] T. L. Gilchrist, G. E. Gymer, 1,2,3-Triazoles, Advances in Heterocyclic Chemistry, 16 (1974) 33-85.
[39] C. Törnkvist, D. Thierry, J. Bergman, B. Liedberg, C. Leygraf, Methyl Substitution in Benzotriazole and Its Influence on Surface Structure and Corrosion Inhibition, Journal of the Electrochemical Society, 136 (1989) 58-64.
[40] L. Santana, M. Teijeira, E. Uriarte, C. Teran, G. Andrei, R. Snoeck, J. Balzarini, E. De Clercq, Synthesis and Biological Evaluation of 1,2-Disubstituted Carbonucleosides of 6-Substituted Purine and 8-Azapurine, Nucleosides and Nucleotides, 18 (1999) 733-734.
[41] W. Dehaen, V. A. Bakulev, Chemistry of 1,2,3-Triazoles, Springer 2015.
[42] T. L. Gilchrist, G. E. Gymer, C. W. Rees, Reactive Intermediates. Part XXIV. 1H-Azirine Intermediates in the Pyrolysis of 1H-1,2,3-Triazoles, Journal of the Chemical Society Perkin Transactions 1, (1975) 1-8.
[43] T. L. Gilchrist, G. E. Gymer, C. W. Rees, Mechanism of the Pyrolysis of 1,2,3-Triazoles. 1H-Azirines as Intermediates, Journal of the Chemical Society D: Chemical Communications, (1971) 1519-1520.
[44] J. Fan, J. T. Yates, Infrared Study of the Oxidation of Hexafluoropropene on TiO2, The Journal of Physical Chemistry, 98 (1994) 10621-10627.
[45] C. N. Rusu, J. T. Yates, Photochemistry of NO Chemisorbed on TiO2 (110) and TiO2 Powders, The Journal of Physical Chemistry B, 104 (2000) 1729-1737.
[46] J.-L. Lin, Y.-C. Lin, B.-C. Lin, P.-C. Lai, T.-E. Chien, S.-H. Li, Y.-F. Lin, Adsorption and Reactions on TiO2: Comparison of N,N-Dimethylformamide and Dimethylamine, The Journal of Physical Chemistry C, 118 (2014) 20291-20297.
[47] E. Borello, A. Zecchina, E. Guglielminotti, A Vibrational Assignment for 1,2,3-Triazole, Journal of the Chemical Society B: Physical Organic, (1969) 307-311.
[48] A. A. Jbarah, A. Ihle, K. Banert, R. Holze, The Electrosorption of 1,2,3-Triazole on Gold as Studied with Surface-Enhanced Raman Spectroscopy, Journal of Raman Spectroscopy, 37 (2006) 123-131.
[49] F. Billes, H. Endrédi, G. Keresztury, Vibrational Spectroscopy of Triazoles and Tetrazole, Journal of Molecular Structure: THEOCHEM, 530 (2000) 183-200.
[50] L.-M. Liu, P. Crawford, P. Hu, The Interaction Between Adsorbed OH and O2 on TiO2 Surfaces, Progress in Surface Science, 84 (2009) 155-176.
[51] H. Perron, J. Vandenborre, C. Domain, R. Drot, J. Roques, E. Simoni, J. J. Ehrhardt, H. Catalette, Combined Investigation of Water Sorption on TiO2 rutile (110) Single Crystal Face: XPS vs. Periodic DFT, Surface Science, 601 (2007) 518-527.
[52] G. Silva, J. W. Bozzelli, Retro-[3 + 2]-Cycloaddition Reactions in the Decomposition of Five-Membered Nitrogen-Containing Heterocycles, The Journal of Organic Chemistry, 73 (2008) 1343-1353.
[53] A. Doughty, G. B. Bacskay, J. C. Mackie, Experimental and ab Initio Theoretical Study of the Kinetics of Rearrangement of Ketene Imine to Acetonitrile, The Journal of Physical Chemistry, 98 (1994) 13546-13555.
[54] X. Yang, S. Maeda, K. Ohno, Global Investigation on the Potential Energy Surface of CH3CN: Application of the Scaled Hypersphere Search Method, The Journal of Physical Chemistry A, 109 (2005) 7319-7328.
[55] H. Bock, R. Dammel, S. Aygen, Gas-phase reactions. 36. Pyrolysis of vinyl azide, Journal of the American Chemical Society, 105 (1983) 7681.
[56] G. L'abbé, Molecular Rearrangements of Five-Membered Ring Heteromonocycles, Journal of Heterocyclic Chemistry, 21 (1984) 627-638.
[57] Y. Y. Morzherin, T. A. Pospelova, T. V. Gluhareva, A. I. Matern, The Dimroth Rearrangement of 1,2,3-Triazoles in the Synthesis of Anion Receptors Based on Calix[4]arenes, ARKIVOC, 11 (2004) 31-35
[58] M. Uber, V. Knoppová, A. Martvoň, Dimroth rearrangement in the thiadiazole-triazole system, Chemical Papers-Chemicke Zvesti, 30 (1976) 514-519.
[59] C.-C. Chuang, W.-C. Wu, M.-X. Lee, J.-L. Lin, Adsorption and Photochemistry of CH3CN and CH3CONH2 on Powdered TiO2, Physical Chemistry Chemical Physics, 2 (2000) 3877-3882.
[60] V. Lorenzelli, G. Busca, N. Sheppard, Infrared Study of the Surface Reactivity of Hematite, Journal of Catalysis, 66 (1980) 28-35.
[61] C.-C. Chuang, J.-S. Shiu, J.-L. Lin, Interaction of Hydrazine and Ammonia with TiO2, Physical Chemistry Chemical Physics, 2 (2000) 2629-2633.