簡易檢索 / 詳目顯示

研究生: 翁世明
Weng, Shih-Ming
論文名稱: 材料非等向性對結構破壞行為的影響
Effects of Material Anisotropy on Structural Fracture Behavior
指導教授: 褚晴暉
Chue, Ching-Hwei
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 156
中文關鍵詞: 複合材料壓電材料應力奇異性階數能量密度理論
外文關鍵詞: energy density theory, stress singularity order, composite material, piezoelectric material
相關次數: 點閱:86下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文內容可分成三部份,第一部份研究三種非等向性材料之楔形和全相結構尖端之應力奇異性。第二部份探討導體、複合材料及壓電材料分別與壓電材料之全相結構問題。第三部份探討含裂縫之壓電材料的破壞行為。
    第一部份以Lekhnitskii公式為基礎,探討三種非等向性材料結構之應力奇異性。應力奇異性階數(l-1)與楔形角度、材料性質及邊界條界有關。利用全圓圖形以等高線描述出空間中任意纖維方向所對應之應力奇異性階數。藉由奇異性等高線圖,可直接找出最強與最弱應力奇異性所對應之纖維方向。最後,改變介相材料之楔形角與材料性質,可得到應力奇異性消失的現象,提供結構設計時重要之參考依據。
    第二部份將Lekhnitskii複變函數延伸至壓電材料,探討壓電材料之全相結構問題,分析材料常數、纖維方向(極化方向)及楔形角對奇異性的影響。當壓電材料極化方向平行x-y平面或平行z-軸,應力奇異性階數將可分為面內場及面外場。藉由奇異性階數關係圖得知最強及最弱奇異性所對應之纖維方向與楔形角。
    第三部份利用能量密度理論,探討含裂縫之單一壓電材料的破壞行為。能量密度因子S可以應力強度因子KI、KII及電位移(電場)強度因子KD(KE)表示。當極化方向垂直裂縫面,實驗觀察出正電場、負電場分別會幫助及抑制裂縫成長,利用本文所推導之能量密度因子S亦可得到此結果。利用能量密度理論預測裂縫成長角度q0及裂縫成長的驅動力Smin。影響裂縫成長角度及裂縫成長的驅動力與外力型態(機械力s∞、靜電力E∞)及壓電材料的極化方向有關。

    This thesis contains three topics: (1) Stress singularities in anisotropic three-material wedges and junctions; (2) Stress singularities at the apex of composite piezoelectric junctions; (3) Fracture analysis of piezoelectric materials with crack for arbitrarily polarized orientation by using energy density criterion.
    The first topic discusses the singularity order in three-material wedges and junctions by using Lekhnitskii’s complex potential functions. The stress singularity order depends on the material constants, the fiber orientation and wedge angles. The stress singularity order is plotted in a circular region. With these figures, the weakest and strongest singularity orders can be determined. By changing the wedge angle and material constants of interphase material, the conditions of vanishing singularity order can be obtained. Numerical results provide the designer with some useful suggestions.
    By extending Lekhnitskii’s formula, the second topic investigates the stress singularities at the apex of a piezoelectric-conductor, -composite, or -piezoelectric junction with generalized plane deformation are investigated. The singularities of decoupled inplane and antiplane electromechanical fields are investigated respectively when piezoelectric materials are polarized in x-y plane or along z-axis. The emphasis has been placed on the roles of wedge angles and polarization of piezoelectric material.
    In the last topic, the fracture analysis of an arbitrarily oriented crack in piezoelectric medium has been predicted by using energy density theory. The expression of the energy density factors S is modified to include the stress intensity factors KI and KII, the electric displacement intensity factor KD (or the electrical intensity factor KE) and the polarized orientation h. According to experiment results, it has shown that positive or negative electric field will aid or impede crack propagation, respectively. The energy density factor can also obtain the same result. The concept of energy density has been applied to predict the crack driving force Smin and its extending angle q0. The influencing factors of crack propagating angle and driving force are the remote mechanical load s∞, remote electric field E∞, and the polarized orientation h related to the crack plane.

    摘要 I 英文摘要 II 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 符號說明 XIV 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 等向性材料 3 1.2.2 非等向性材料 4 1.2.3 壓電材料楔形結構 5 1.2.4 含裂縫之壓電材料破壞研究 5 1.3 研究動機及本文架構 7 第二章 三種非等向性材料之楔形及全相結構 13 2.1 應力場及位移場 13 2.2 應力奇異性階數之特徵方程式 24 2.2.1 楔形結構 27 2.2.2 全相結構 30 2.3 纖維方向 (x,h) 之定義 31 2.3.1 全圓之定義 34 2.4 結果與討論 36 2.4.1 特殊實例驗証 37 2.4.2 三種材料全相結構問題 40 2.4.3 介相材料為等向性材料 50 第三章 含壓電材料與非等向性材料之全相結構 61 3.1 廣義Lekhnitskii複變函數 61 3.2 應力奇異性階數之特徵方程式 75 3.2.1 壓電材料/壓電材料全相結構 77 3.2.2 壓電材料/複合材料全相結構 79 3.2.3 壓電材料/導體全相結構 80 3.3 結果與討論 81 3.3.1 特殊實例驗証 82 3.3.2 導體-壓電材料之全相結構 88 3.3.3 複合材料/壓電材料之全相結構 95 3.3.4 壓電材料/壓電材料之全相結構 98 第四章 含裂縫之壓電材料破壞研究 100 4.1 問題描述 100 4.2 基本公式 101 4.2.1裂縫尖端之電彈場解 108 4.3 能量密度理論 112 4.4 結果與討論 114 4.4.1 無窮遠處沿y-軸施加張應力s¥ 114 4.4.2 無窮遠處沿x-軸施加剪應力t¥ 116 4.4.3 無窮遠處沿y-軸施加電場E¥ 119 4.4.4 無窮遠處施加機械力s¥與電場E¥ 121 4.4.5 無窮遠處施加歪斜之機械力s¥與電場E¥ 126 第五章 結論 131 參考文獻 135 附錄 144

    1. Williams, M. L., “Stress singularities resulting from various boundary conditions in angular corners of plates in extension”, Transactions of the ASME, Journal of Applied Mechanics, Vol. 74, pp. 526-528, 1952.
    2. Bogy, D. B., “Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading”, Transactions of the ASME, Journal of Applied Mechanics, Vol. 35, pp. 460-466, 1968.
    3. Dundurs, J., “Effect of elastic constants on stress in a composite under plane deformation”, Journal of Composite Materials, Vol. 1, pp. 310-322, 1967.
    4. Bogy, D. B., “On the problem of edge-bonded elastic quarter-planes loaded at the boundary”, International Journal of Solids and Structures, Vol. 6, pp. 1287-1313, 1970.
    5. Bogy, D. B., “Two edge-bonded elastic wedges of different materials and wedge angles under surface tractions”, Transactions of the ASME, Journal of Applied Mechanics, Vol. 38, 377-386, 1971.
    6. Bogy, D. B., and Wang, K. C., “Stress singularities at interface corners in bonded dissimilar isotropic elastic materials”, International Journal of Solids and Structures, Vol. 7, pp. 993-1005, 1971.
    7. Dempsey, J. P., and Sinclair, G. B., “On the stress singularities in the plane elasticity of the composite wedge”, Journal of Elasticity, Vol. 9, No. 4, pp. 373-391, 1979.
    8. Dempsey, J. P., and Sinclair, G. B., “On the singular behavior at the vertex of a bi-material wedge”, Journal of Elasticity, Vol. 11, No. 3, pp. 317-327, 1981.
    9. Theocaris, P. S., “The order of singularity at a multi-wedge corner of a composite plate”, International Journal of Engineering Science, Vol. 12, pp. 107-120, 1974.
    10. Chen, D. H., and Mori, Y., “Stress singularities for a V-notch with its tip on the bimaterial interface”, Transactions of Japan Society of Mechanical Engineers, Series A, 58, pp. 2381-2386, 1992.
    11. Muskhelishvili, N. I., Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, 1953.
    12. Inoue, T., and Koguchi, H., “Influence of the intermediate material on the order of stress singularity in three-phase bonded structure”, International Journal of Solids and Structures, Vol. 33, No. 3, pp. 399-417, 1996.
    13. Pageau, S. S., Joseph, P. F., and Biggers, S. B. Jr., “The order of stress singularities for bonded and disbonded three-material iunctions”, International Journal of Solids and Structures, Vol. 31, No. 21, pp. 2979-2997, 1994.
    14. Ma, C. C., and Hour, B. L., “Analysis of dissimilar anisotropic wedges subjected to antiplane shear deformation”, International Journal of Solids and Structures, Vol. 25, No. 11, pp. 1295-1309, 1989.
    15. Bogy, D. B., “The plane solution for anisotropic elastic wedges under normal and shear loading”, Transactions of the ASME, Journal of Applied Mechanics, Vol. 39, pp. 1103-1109, 1972.
    16. Kuo, M. C., and Bogy, D. B., “Plane solutions for the displacement and traction-displacement problems for anisotropic elastic wedges”, Transactions of the ASME, Journal of Applied Mechanics, Vol. 41, pp. 197-202, 1974.
    17. Kuo, M. C., and Bogy, D. B., “Plane solutions for traction problems on orthotropic unsymmetrical wedges and symmetrically twinned wedges”, Transactions of the ASME, Journal of Applied Mechanics, Vol. 41, pp. 203-208, 1974.
    18. Lekhnitskii, S. G., Theory of Elasticity of an Anisotropic Elastic Body, Holden-Day, San Francisco, 1963.
    19. Delale, F., “Stress singularities in bonded anisotropic materials”, International Journal of Solids and Structures, Vol. 20, pp. 31-40, 1984.
    20. Huang, T. F., and Chen, W. H., “On the free-edge stress singularity of general composite laminates under uniform axial strain”, International Journal of Solids and Structures, Vol. 31, pp. 3139-3151, 1994.
    21. Yin, W.-L., “Free-edge effects in anisotropic laminates under extension, bending and twisting, Part I: A stress-function-based variational approach”, Transactions of the ASME, Journal of Applied Mechanics, Vol. 61, pp. 410-415, 1994.
    22. Yin, W.-L., “Free-edge effects in anisotropic laminates under extension, bending and twisting, Part II: Eigenfunction analysis and the results for symmetric laminates”, Transactions of the ASME, Journal of Applied Mechanics, Vol. 61, pp. 416-421, 1994.
    23. Kim, T. W., and Im, S., “Boundary layers in wedge of laminated composite strips under generalized plane deformation – Part I: Asymptotic solutions”, International Journal of Solids and Structures, Vol. 32, pp. 609-628, 1995.
    24. Boniface, V. and Shmha, K. R.Y., “Suppression of complex singularity using wedge interphase in interface fracture”, International Journal of Solids and Structures, Vol. 38, pp. 5411-5420, 2001.
    25. Stroh, A. N., “Steady state problems in anisotropic elasticity”, Journal of Mathematical Physics, Vol. 41, pp. 77-103, 1962.
    26. Eshelby, J. D., Read, W. T. and Shockley, W., “Anisotropic elasticity with application to dislocation theory”, Acta Metallurgica, Vol. 1, pp. 251-259, 1953.
    27. Ting, T. C. T., and Chou, S. C., “Edge singularities in anisotropic composites”, International Journal of Solids and Structures, Vol. 17, pp. 1057-1068, 1981.
    28. Ting, T. C. T., “Singularities at the tip of a crack mormal to the interface of an anisotropic layered composite”, International Journal of Solids and Structures, Vol. 20, pp. 439-454, 1984.
    29. Ting, T. C. T., and Hwu, C. B., “Sextic formalism in anisotropic elasticity for almost non-semisimple matrix N”, International Journal of Solids and Structures, Vol. 24, pp. 65-76, 1988.
    30. Ting, T. C. T., Anisotropic Elasticity: Theory and Applications. Oxford University Press, New York, 1996.
    31. Ting, T. C. T., “Symmetric representation of stress and strain in stroh formalism and physical meaning of the tensors L, S, L(q) and S(q)”, Journal of Elasticity, Vol. 50, pp. 91-96, 1998.
    32. Chen, H. P., “Stress singularities in anisotropic multi-material wedges and junctions”, International Journal of Solids and Structures, Vol. 35, pp. 1057-1073, 1998.
    33. Ting, T. C. T., “Explicit solution and invariance of the singularities at an interface crack in anisotropic composites”, International Journal of Solids and Structures, Vol. 22, pp. 965-983, 1986.
    34. Sung, J. C. and Lin, Y. Y., “Singularities of an inclined crack terminating at an anisotropic bimaterial interface”, International Journal of Solids and Structures, Vol. 34, pp. 3727-3754, 1997.
    35. Krenk, S., “On the elastic constants of plane orthotropic elasticity”, Journal of Composite Materials, Vol. 13, pp. 108-116, 1979.
    36. Chue, C.H. and Liu, C.I., “A general solution on stress singularities in anisotropic wedge”, International Journal of Solids and Structures, Vol. 38, pp. 6889-6906, 2001.
    37. Chue, C.H. and Liu, C.I., “Disappearance of free-edge stress singularity in composite laminates”, Composite Structures, Vol. 56, pp. 111-129, 2002.
    38. Chue, C. H. and Liu, C.I., “Stress singularities in a bimaterial anisotropic wedge with arbitrary fiber orientation”, Composite Structures, Vol. 58, pp. 49-56, 2002.
    39. Chue, C.H., Tseng, C.H. and Liu, C.I., “On stress singularities in an anisotropic wedge for various boundary conditions”, Composite Structures, Vol. 54, pp. 87-102, 2001.
    40. Chen, D. H., and Mori, Y., “Stress singularities for crack with tip on bimaterial interface of isotropic and anisotropic phases”, Transactions of Japan Society of Mechanical Engineers, Series A, Vol. 60, pp. 2228-2235, 1994.
    41. Desmorat, R., and Leckie, F. A., “Singularities in bi-materials: parametric study of an isotropic/anisotropic joint”, European Journal of Mechanics-A/Solids, Vol. 17, pp. 33-52, 1998.
    42. Pageau, S. S., Joseph, P. F., and Biggers, S. B. Jr., “Finite element analysis of anisotropic materials with singular inplane stress fields”, International Journal of Solids and Structures, Vol. 32, pp. 571-591, 1995.
    43. Pageau, S. S., Joseph, P. F., and Biggers, S. B. Jr., “A finite element analysis of the singular stress fields in anisotropic materials loaded in antiplane shear”, International Journal for Numerical Methods in Engineering, Vol. 38, pp. 81-97, 1995.
    44. Pageau, S. S., and Biggers, S. B. Jr., “A finite element approach to three-dimensional singular stress states in anisotropic multi-material wedges and junctions”, International Journal of Solids and Structures, Vol. 33, pp. 33-47, 1996.
    45. Barnett, D. M. and Lothe, J., “Disloactions and line charges in anisotropic piezoelectric insulators”, Physica Status Solidi (B), Vol. 67, pp. 105-111, 1975.
    46. Parton, V. Z., “Fracture mechanics of piezoelectric materials”, Acta Astronautica, Vol. 3, pp. 671-683, 1976.
    47. Sosa, H. A. “Plane problems in piezoelectric media with defects”, International Journal of Solids and Structures, Vol. 28, pp. 491-505, 1991.
    48. Chen, T. and Lai, D., “An exact correspondence between plane piezoelectricity and generalized plane strain in elasticity”, Proceeding of Royal Society London A, Vol. 453, pp. 2689-2713, 1997.
    49. Chen, T. and Yen, W. J., “Piezoelectric analogy of generalized torsion in anisotropic elasticity”, Journal of Elasticity, Vol. 49, pp. 239-256, 1998.
    50. Chung, M. Y. and Ting, T. C. T., “Line force, charge and dislocation in angularly inhomogeneous anisotropic piezoelectric wedges and spaces”, Philosophical Magazine, Vol. 71, pp. 1335-1343, 1995.
    51. Chung, M. Y. and Ting, T. C. T., “Line force, charge, and dislocation in anisotropic piezoelectric composite wedges and spaces”, Transactions of the ASME, Journal of Applied Mechanics, Vol. 62, pp. 423-428, 1995.
    52. Xu, X. L. and Rajapakse, R. K. N. D., “On singularities in composite piezoelectric wedges and junctions”, International Journal of Solids and Structures, Vol. 37, pp. 3253-3275, 2000.
    53. Wei, W. B., The electro-Mechanical field of a piezoelectric bonded wedge under anti-plane shear loading. Master Thesis, Mechanical Engineering of National Cheng Kung University, Tainan, Taiwan, 2002.
    54. Chue, C. H. and Chen, C. D., “Decoupled formulation of piezoelectric elasticity under generalized plane deformation and its application to wedge problems”, International Journal of Solids and Structures, Vol. 39, pp. 3131-3158, 2002.
    55. Chue, C. H. and Chen, C. D.,” Antiplane stress singularities in a bonded bimaterial piezoelectric wedge”, Archive of Applied Mechanics, Vol. 72, pp. 673-685, 2003.
    56. Deeg, W. F., ”The analysis of dislocation, crack and inclusion problems in piezoelectric solids”, Ph.D. Dissertation, Stanford University, CA, 1980.
    57. Dunn, M. L., ”The effects of crack face boundary conditions on the fracture mechanics of piezoelectric solids”, Engineering Fracture Mechanics, Vol. 48, pp. 25-39, 1994.
    58. Pak, Y. E., “Crack extension force in a piezoelectric material”, Transactions of the ASME, Journal of Applied Mechanics, Vol. 57, pp. 647-653, 1990.
    59. Zhang, T. Y. and Hack, J. E., “Mode-III cracks in piezoelectric materials”, Journal of Applied Physics, Vol. 71, pp. 5865-5870, 1992.
    60. Wang, T. C. and Han, X. L., “Fracture mechanics of piezoelectric materials”, International Journal of Fracture, Vol. 98, pp. 15-35, 1999.
    61. Shindo, Y., Narita, K. and Tanaka, K.,”Electroelastic intensification near anti-plane shear crack in orthotropic piezoelectric ceramic strip”, Theoretical and Applied Fracture Mechanics, Vol. 25, pp. 65-71.
    62. Narita, F. and Shindo, Y., “The interface crack problem for bonded piezoelectric and orthotropic layers under antiplane shear loading”, International Journal of Fracture, Vol. 98, pp. 87-101, 1999.
    63. Li, X. F. and Fan, T. Y., “Semi-infinite anti-plane crack in a piezoelectric material”, International Journal of Fracture, Vol. 102, L55-L60, 2000.
    64. Chao, L. P. and Huang, J. H., “On a piezoelectric material containing a permeable elliptical crack”, International Journal of Solids and Structures, Vol. 37, pp. 5161-5176, 2000.
    65. Gao, H., Zhang, T. Y. and Tong, P., “Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic”, Journal of the Mechanics and Physics of Solids, Vol. 45, pp.491-510, 1997.
    66. Gao, C. F. and Fan, W. X., “Exact solutions for the plane problem in piezoelectric materials with an elliptic or a crack”, International Journal of Solids and Structures, Vol. 36, pp. 2527-2540, 1999.
    67. Park, S. and Sun, C. T., “Fracture criteria for piezoelectric ceramics”, Journal of the American Ceramic Society, Vol. 78, pp. 1475-1480, 1995.
    68. Singh, R. N. and Wang, H., in Adaptive Materials Systems, Proc. Of AMD-Vol. 206/MD-Vol. 58, ed. Carman,G. P., Lynch, C. and Sottos, N. R., ASME, pp.85-95, 1995.
    69. Fu, R. and Zhang, T.Y., “Effect of an applied electric field on the fracture toughness of lead zirconate titanate ceramics”, Journal of the American Ceramic Society, Vol. 83, pp. 1215-1218, 2000.
    70. Shen, S. and Nishioka, T., “Fracture of piezoelectric materials: energy density criterion”, Theoretical and Applied Fracture Mechanics, Vol. 33, pp. 57-65, 2000.
    71. Zuo, J. Z. and Sih, G. C., “Energy density theory formulation and interpretation of cracking behavior for piezoelectric ceramics”, Theoretical and Applied Fracture Mechanics, Vol. 34, pp. 17-33, 2000.
    72. Soh, A. K., Fang, D. N. and Lee, K. L., “Fracture analysis of piezoelectric materials with defects using energy density theory”, International Journal of Solids and Structures, Vol. 38, pp. 8331-8344, 2001.
    73. Kumar, S. and Singh, R. N., “Crack propagation in piezoelectric materials under combined mechanical and electrical loadings”, Acta Materialia, Vol. 44, pp. 173-200, 1996.
    74. Kumar, S. and Singh, R. N., “Energy release rate and crack propagation in piezoelectric materials Part I: Mechanical/electrical load”, Acta Materialia, Vol. 45, pp. 849-857, 1997.
    75. Kumar, S. and Singh, R. N., “Energy release rate and crack propagation in piezoelectric materials Part II: Combined mechanical and electrical loads”, Acta Materialia, Vol. 45, pp. 859-868, 1997.
    76. Xu, X. L. and Rajapakse, R. K. N. D., ”Analytical solution for an arbitrarily oriented void/crack and fracture of piezoceramics”, Acta Materialia, Vol. 47, pp. 1735-1747, 1999.
    77. Erdogan, F. and Sih, G. C., “On the crack tension in plates under plane loading and transverse shear”, Journal of Basic Engineering, Vol. 85, pp. 519-527, 1963.
    78. Chan, W. S., Fracture and damage mechanics in laminated composites. In Composites Engineering Handbook, edited by P. K. Mallick, Marcel Dekker, Inc., New-York, pp. 309-370, 1997.
    79. Sendeckyj, G. P. “Concepts for crack arrestment in composites”, in Fracture Mechanics of Composites, ASTM STP 593, American Society for Testing and Materials, Philadelphia pp. 215-226, 1975.
    80. Mall, S. and Coleman, J. M., “Monotonic and fatigue loading behavior of quasi-isotropic graphite/epoxy laminate embedded with piezoelectric sensor”, Smart Materials and Structures, Vol. 7, pp. 822-832, 1998.
    81. Furta, A. and Uchino, K., “Dynamic observation of crack propagation in piezoelectric multilayer actuators”, Journal of American Ceramic Society, Vol. 76, pp. 1615-1617, 1993.
    82. Wang, A. S. D. and Crossman, F. W., “Some new results on edge effect in symmetric composite laminates”, Journal of Composite Materials, Vol. 11, pp. 92-106, 1977.
    83. Lin, K. Y. and Hartmann, H. H., “Numerical analysis of stress singularities at a bonded anisotropic wedge”, Engineering Fracture Mechanics, Vol. 32, pp. 211-224, 1989.
    84. Suo, Z., Kuo, C. M., Barnett, D. M. and Willis, J. R., “Fracture mechanics for piezoelectric ceramics”, Journal of the Mechanics and Physics of Solids, Vol. 40, pp. 739-765, 1992.
    85. Chen, K. P., Stress singularities in a piezoelectric wedge. Master Thesis, Mechanical Engineering of National Cheng Kung University, Tainan, Taiwan, 2002.

    下載圖示 校內:立即公開
    校外:2004-05-21公開
    QR CODE