簡易檢索 / 詳目顯示

研究生: 鄭鈺雯
Cheng, Yu-Wen
論文名稱: 福衛二號影像求定極地地區物點點位之品質評估
Quality Evaluation on Object Coordinates Determined by FORMOSAT-2 Stereo Pairs in Polar Area
指導教授: 蔡展榮
Tsay, Jaan-Rong
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 107
中文關鍵詞: 福衛二號極地地區數值覆蓋面模型
外文關鍵詞: FORMOSAT-2, Polar area, DSM
相關次數: 點閱:89下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣自行研發的福爾摩沙二號衛星擁有高空間解析力(全色態影像2m)以及高時間解析力(24小時即能回到同一地區拍攝),而本研究目的是應用福衛二號影像求定極地地區高程變化,分析資料處理流程與方法,並再應用模擬影像計算成果品質指標(包括精度、可靠度、條件數),並分析製作冰貌高程模型過程中將會面臨到的困難與限制,並提出可行的解決辦法。

    模擬極區片幅式影像資料計算成果顯示,若影像基線長從100km增加為800km,可使平面和高程精度分別提升約2m和35m,平面內可靠度值下降1,外可靠度下降1,意即基線長800km的觀測值有誤時較容易被發現,且對於未知數函數的影響較小。高程內外可靠度值分別下降約106和54;在影像數量方面,同軌兩張拍攝增加到同軌與異軌拍攝四張,可使平面和高程精度分別提升約31m和40m,平面內外可靠度值約下降3和3,高程內外可靠度值分別下降約7和4。

    實際極區影像資料計算因控制點取得不易,因此使用三天的立體像對做相對性的比較。由第一天的像對作為基礎,從當中選出11個控制點以及23個檢核點,第二天應用此23個檢核點計算結果,X,Y,Z坐標的RMSD值分別為±15.57m、±8.90m以及±28.18m。而第三天同樣應用23個檢核點,X,Y,Z坐標的RMSD值分別為±46.70m、±18.90m以及±43.48m。

    在極區製作冰貌模型的過程中,因為控制點不易取得,所以使用立體模型的相對套合來進行比較。雖無法計算出極區真實的體積,但也可藉此方式看出極地快速變化之情況。

    FORMOSAT-2 satellite developed by Taiwan has high spatial resolution (2m panchromatic images) and high temporal resolution (revisit time interval of one day). In this study, the data process programs developed are adopted to use FORMOSAT-2 images to get polar terrain features and determine the terrain surface changes. By means of analyzing the data quality index including accuracy, reliability and conditional number, the quality of object coordinates determined by FORMOSAT-2 images is examined and analyzed. The inherent problems and limitations to the determination of accurate DSM in polar area are also discussed, and some solutions are given.

    In the process of simulated frame images in the polar region, if the baseline length of images is increased from 100km to 800km, the horizontal and vertical accuracy is increased about 2m and 35m, respectively. The internal reliability value of horizontal coordinates is decreased 1m and external reliability value is decreased 1, and also, the internal and external reliability values of vertical coordinate are decreased 106 and 54, respectively. They show that the observation errors can be found more easily and they have less effect on the determination of correct function values of unknowns when the baseline length is increased. Compared to the results determined by two images taken on the same orbit, four images taken on two neighboring orbits have better accuracy with the standard deviation decrease of about 31m and 40m on horizontal and vertical coordinates, respectively. In addition, the internal and external reliability values of horizontal coordinates are decreased 3 and 3, and the internal and external reliability values of vertical coordinate are decreased 7 and 4, respectively.
    In the test areas in polar region, no ground control points are available. Therefore, three stereo models are computed respectively by using stereo pairs taken on three days, where 11 and 23 points determined from the stereo pairs taken on first day are selected and used as GCPs and check points in the computations of the stereo pairs on the second and third day. The model on the second day has the RMSD on X, Y and Z with ±15.57m, ±8.90m and ±28.18m, respectively. The RMSD on X, Y and Z of the points on the model of the third day is ±46.70m, ±18.9m and ±43.48m, respectively.

    Because the check points and ground control points in polar areas can not be acquired, the DSMs determined by real FORMOSAT-2 images are compared by means of relative registration of any two DSMs. Although the real volume can not be measured in the polar area, the fast-change in the terrain suface of polar region can still be detected by registration of any two DSMs determined by FORMOSAT-2 images taken on different days.

    中文摘要 I ABSTRACT II 誌謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 第一章 緒論 1 §1-1研究動機與目的 1 §1-1-1 研究動機 1 §1-1-2 研究目的 2 §1-2文獻回顧 2 §1-2-1 極地狀況 3 §1-2-2 研究內容相關之文獻 9 §1-3研究方法與流程 11 §1-4論文架構 13 第二章 福衛二號影像 15 §2-1福衛二號影像參數 15 §2-2福衛二號影像之成像原理和方法 16 §2-3福衛二號影像之成像性質 18 §2-3-1空間解析力 18 §2-3-2時間解析力 19 §2-3-3光譜解析力 20 §2-4福衛二號影像產品介紹 21 §2-4-1 福衛二號影像資料檔 21 §2-4-2 標準產品等級 22 §2-5福衛二號在極區取像現況和限制 31 §2-5-1 福衛二號在極地地區取像現況 31 §2-5-2 極地地區取像之限制 32 第三章 實驗計算方法和流程 34 §3-1模擬數據演算流程設計 36 §3-2 實際影像的計算處理流程 46 §3-2-1 幾何改正 46 §3-2-2 影像金字塔 48 §3-2-3 特徵點自動量測 49 §3-2-3-1區域為基礎之影像匹配 50 §3-2-3-2特徵為基礎之影像匹配 52 §3-2-3-3關係為基礎之影像匹配 53 §3-2-3-4連結點自動匹配 53 §3-2-4空中三角測量 55 §3-2-5 DSM之求定 61 第四章 實驗成果與分析 65 §4-1 模擬數據實驗分析 65 §4-1-1 基線長對福衛二號影像定點的理論精度之影響: 67 §4-1-2 連結點數量對福衛二號影像定點的理論精度之影響: 71 §4-1-3 立體像對之影像數量對福衛二號影像定點的理論精度之影響: 74 §4-1-4 控制點精度對福衛二號影像定點的理論精度之影響: 78 §4-1-5 小區域法之可靠度分析 80 §4-2 實際極地資料之分析 83 §4-2-1 實驗影像內容 83 §4-2-2 實驗影像分析 87 §4-3 實際影像進行空中三角測量計算 89 §4-3-1 多項式係數 89 §4-3-2 控制點之取得及應用 90 §4-3-3 計算成果 97 第五章 結論與建議 102 參考文獻 105

    1. 尤瑞哲,2003。測量坐標系統,國立成功大學測量及空間資訊學系,測量坐標系統講義,台南。
    2. 李德仁、袁修李,2002。誤差處理與可靠性理論,武漢大學出版社,ISBN 7-307-03474-3。
    3. 邱式鴻、王蜀嘉,1996。Förstner 特徵物萃取法精確性的探討,第十五屆測量學術及應用研討會論文集,嘉義,中正大學,pp. 667-676。
    4. 吳怡瑛,2000。中華二號衛星影像幾何模擬及方位重建,國立中央大學土木工程學研究所碩士論文。
    5. 吳豐敏、吳岸明,2004。福爾摩沙衛星二號影像處理系統自主發展,國研科技第二期,pp.18-23。
    6. 林義乾、趙鍵哲,2006。以影像控制區塊進行福衛二號衛星影像定位,第二十五屆測量學術及應用研討會論文集,桃園,清雲科技大學,pp. 91-98。
    7. 財團法人國家實驗研究院國家太空中心網站,2008年7月1日下載自: http://www.nspo.org.tw/2008c/
    8. 高爾,2007。不願面對的真相,商周出版,ISBN 978-986-124-854-7。
    9. 國立中央大學太空及遙測研究中心,2005,資源衛星接收站使用者手冊(第四版),pp.79-81。
    10. 張智安、陳良健,2004。中華衛星二號衛星影像方位重建之研究,台灣地理資訊學會暨學術研討會,僅收入CD。
    11. 張智安、陳良健,2009。高解析衛星影像幾何分析,航測及遙測學刊,第十四卷,第一期,pp.25-35。
    12. 陳鴻裕、吳豐敏,2004。華衛二號影像產品格式介紹,台灣地理資訊學會暨學術研討會,僅收入CD。
    13. 陳鴻裕、吳豐敏、劉小菁,2004。華衛二號影像終端系統介紹,第二十三屆測量學術及應用研討會論文集(一) ,台中,中興大學,pp.333-338。
    14. 蔡文龍,2005。福衛二號影像糾正及誤差探討,國立成功大學測量及空間資訊學系碩士論文。
    15. 劉小菁、黃瓊慧、張莉雪、吳岸明、吳豐敏,2007。福衛二號影像在極區環境變化監測的應用,台灣地理資訊學會暨學術研討會,僅收入CD。
    16. 劉永年,2005。福衛二號的現況及應用,福爾摩沙衛星二號應用研討會,台北國際會議中心。
    17. Chen, L.C., Teo, T.A., and Liu, C.L., 2006. The Geometrical Comparisons of RSM and RFM for FORMOSAT-2 Satellite Images. Photogrammetry Engineering & Remote Sensing, Vol. 72, N0. 5, May 2006, pp.573-579.
    18. Doake, C.S.M., and Vaughan, D.G., 1991. Rapid disintegration of the Wordie Ice Shelf in response to atmospheric warming. Nature, 350, pp. 328-330.
    19. Kreyszig. E., 1999. Advanced Engineering Mathematics, Eighth Edition, John Wiley & Sons, New York, p.910.
    20. Leica Geosystems Geospatial Imaging, 2006. Leica Photogrammetry Suite Project Manager.
    21. Morrison, S.J., 1990. Warmest year on record on the Antarctic Peninsula. Weather 45, pp.231–232.
    22. National Snow and Ice Data Center(NSIDC), 2002. Larsen B Ice Shelf Collapses in Antarctica, Downloaded on April 2, 2008.
    from http://nsidc.org/iceshelves/larsenb2002/
    23. National Snow and Ice Data Center(NSIDC), 2008. Antarctic Ice Shelf Disintegration Underscores a Warming World, Downloaded on April 26, 2008. from http://nsidc.org/news/press/20080325_Wilkins.html
    24. NASA, 2007. Sea Ice Yearly Minimum 1979-2007, Downloaded on April 26, 2008. from http://svs.gsfc.nasa.gov/goto?3464
    25. Rignot, E., and Kanagaratham, P., 2006. Change in the Velocity Structure of the Greenland Ice Sheet. Science 311, pp. 986-988.
    26. Schenk, T., 1999. Digital Photogrammetry , Volume I, TerraScience, pp.251~266.
    27. Toutin, T., 2004. Review article: geometric processing of remote sensing images: models algorithms and methods, International Journal of Remote Sensing, Vol. 25, No. 10, pp.1893-1924.
    28. Wolf, P.R., and Dewitt, B.A., 2000. Elements of Photogrammetry, McGRAW-Hill International Edition, ISBN 0-07-118454-6.
    29. Wu, A.M., Wu, F., Huang, C.H., Yan, K., Chang, L.H., and Wang, S., 2007. Monitoring Polar Environmental Change Using FORMOSAT-2 Satellite. American Geophysical Union. unpaginated CD-ROM.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE