簡易檢索 / 詳目顯示

研究生: 陳昭岑
Chen, Chao-Tsen
論文名稱: 南橫公路霧鹿、利稻及摩天地區邊坡穩定之探討研究
Slope Stability of Wulu, Lidao and Motain Area in Southern Cross Highway
指導教授: 林慶偉
Lin, Ching-Weei
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 180
中文關鍵詞: 南橫公路地表位移量觀測不連續面分析Coltop3D邊坡破壞類型
外文關鍵詞: Southern Cross Highway, Surface displacement Monitoring, Discontinuities analysis, Coltop3D, Type of Slope Failure
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要有兩個研究項目:一、利用鋼釘監測網與單頻GPS觀測南橫公路里程數164K+82~164K+133(摩天地區)之潛在大規模崩塌的活動性,瞭解潛在大規模崩塌的活動行為,以及降雨與坡面滑動間的關係;二、透過無人飛行載具輔助拍攝南橫公路里程數174K+155~174K+405(利稻地區)與里程數179K+355~179K+425(霧鹿地區)兩路段邊坡,將人力不易抵達處裸露岩層之弱面結合Coltop3D軟體進行不連續面位態分析,經野外不連續面特性查核後,利用赤平投影法探討邊坡破壞類型與可能的滑動方向分析。
    摩天地區之潛在大規模崩塌地表位移量觀測成果顯示,鋼釘監測網部分,各裂縫在水平方向皆有擴張的趨勢;在垂直方向皆有向下沉陷的趨勢;部分裂縫有造成一側牆體向外推移的情形。單頻GPS觀測位移成果顯示,崩塌滑動體最大位移方向朝向東南方320.39毫米;向下沉陷161.51毫米。結合雨量資料顯示,當降雨事件的累計降雨量超過300毫米或降雨事件中日降雨量超過200毫米時,摩天地區之潛在大規模崩塌會產生明顯活動,造成人工建物之裂縫擴張程度加劇與單頻GPS觀測站明顯位移變化。
    致災邊坡不連續面分析成果顯示,Coltop3D應用於裸露岩體區域之不連續面位態分析,可以良好的呈現不連續面的位態與其分佈位置,並與野外量測成果相吻合。南橫公路里程數174K+155~174K+405之邊坡,可能產生2種邊坡破壞類型,分別為(1)受控於解壓節理影響產生平面型破壞,滑動方向為方向角177°;(2)受控於解壓節理與節理面J1影響產生楔型破壞,滑動方向為方向角230°;與受控於解壓節理與劈理面產生楔型破壞,滑動方向為方向角105°。里程數179K+355~179K+425之邊坡受控於節理面影響可能產生傾覆型破壞,崩落方向為方向角44°。

    This research has two principal parts. First, using nail networks and single-frequency GPS observe the potential large-scale landslide activity from kilometer markers 164K+82 to 164K+133 of the Motain area Southern Cross Highway to realize the potential large-scale landslide activity as well as the relationship between rainfall and slope sliding. Secondly, the study makes use of unmanned aerial vehicles to survey exposed rock formations not easily accessible by humans along two sections of the Highway: kilometer markers 174K+155 to 174K+405 and 179K+355 to 179K+425. Coltop3D software performs structural analysis of topography using point cloud. The stereographic projection method was used to analyze the slope failure type and describe possible slide direction.
    The displacement observation results of a potential large-scale landslide in the Motain area show that all crack tends to expand in the horizontal direction and downward in the vertical direction according to nail network analysis on the slope. Some cracks cause one side of the wall to move outward. According to the GPS observative results, the maximum horizontal displacement of the slope sliding was 320.39 mm to the southeast. The amount of vertical displacement was 161.51 mm. Combined with the rainfall data, when the cumulative rainfall of the rainfall event exceeds 300 mm or the rainfall of the day exceeds 200 mm during the event, the potential large-scale landslide in the Motain area has caused obvious activities. Obvious activities intensify the degree of fissure expansion of the artificial structure and cause obvious displacement in the GPS observation station.
    Regarding the analysis of the discontinuities of the disaster-causing slope, Coltop3D analysis of the discontinuous surface in the area of exposed rock mass well presents discontinuities and distribution positions consistent with the field measurement results. Two possible types of slope failure were identified in the analysis of the discontinuous of the disaster-causing slope between kilometer markers 174K+155 to 174K+405. 1. Planar-type failure is expected along with the release joint with an anticipated sliding direction of 177 degrees; 2. Wedge-shaped failure is expected intersecting the release joint and joint, J1, with an anticipated sliding direction of 230 degrees, with the additional risk of Wedge-shaped failure from release joint and cleavage intersections at an anticipated sliding direction of 105 degrees. In the analysis of disaster-causing slope between kilometer markers 179K+355 to 179K+425 of the Southern Cross Highway, Overturning failure is expected, governed by the influence of the Joint, with an anticipated sliding direction of 44 degrees.

    摘要 I 英文延伸摘要 II 致謝 VI 目錄 VII 表目錄 IX 圖目錄 X 第 一 章 緒論 1 1.1 前言 1 1.2 地理位置及地形概述 2 1.3 區域地質概況 5 第 二 章 前人研究 8 2.1 岩體不連續面特性 8 2.2 邊坡破壞類型 11 2.3 大規模崩塌 13 2.4 邊坡活動性 15 第 三 章 研究方法 18 3.1 研究方法及流程 18 3.2 室內判釋分析 18 3.2.1 崩塌特徵判釋 20 3.3 大規模崩塌潛勢區活動性分析 20 3.3.1 崩塌歷史影像變異性分析 21 3.3.2 崩塌特徵檢核 21 3.3.3 地表位移量觀測 21 3.4 致災邊坡不連續面分析 24 3.4.1 岩體不連續面描述 24 3.4.2 三維點雲分析 31 3.4.2.1 三維影像拍攝及三維點雲產製 31 3.4.2.2 Coltop3D分析 31 3.5 邊坡穩定性分析 33 3.5.1 邊坡破壞類型 33 第 四 章 研究成果 40 4.1 室內判釋工作成果 40 4.1.1 崩塌特徵判釋 40 4.1.1.1 南橫公路里程數164K+82~164K+133之邊坡: 40 4.1.1.2 南橫公路里程數174K+155~174K+405之邊坡: 43 4.1.1.3 南橫公路里程數179K+355~179K+425之邊坡: 46 4.2 大規模崩塌潛勢區活動性分析 49 4.2.1 邊坡歷史影像變異性分析 49 4.2.2 崩塌特徵野外檢核 60 4.2.3 地表位移量觀測成果 70 4.2.3.1 鋼釘監測網 70 4.2.3.2 單頻GPS觀測站 93 4.2.4 降雨量對地表位移觀測之影響 98 4.3 致災邊坡不連續面分析 108 4.3.1 岩體不連續面統計 108 4.3.1.1 南橫公路里程數174K+155~174K+405之邊坡 108 4.3.1.2 南橫公路里程數179K+355~179K+425之邊坡 122 4.3.2 三維點雲分析 129 4.3.2.1 南橫公路里程數174K+155~174K+405之邊坡 129 4.3.2.2 南橫公路里程數179K+355~179K+425之邊坡 133 第 五 章 綜合結果與討論 137 5.1 大規模崩塌潛勢區活動性探討 137 5.1.1 室內崩塌判釋討論 137 5.1.2 野外崩塌特徵查核討論 139 5.1.3 降雨量與地表位移觀測之關係 141 5.1.4 地表位移觀測成果比較 149 5.2 致災邊坡不連續面分析探討 152 5.2.1 野外不連續面量測與三維點雲分析比較 152 5.2.1.1 南橫公路里程數174K+155~174K+405之邊坡 152 5.2.1.2 南橫公路里程數179K+355~179K+425之邊坡 156 5.2.2 致災邊坡破壞類型探討 160 5.2.2.1 南橫公路里程數174K+155~174K+405之邊坡 160 5.2.2.2 南橫公路里程數179K+355~179K+425之邊坡 162 第 六 章 結論 164 參考文獻 166 附錄 174 表目錄 表2- 1、崩塌分類表 12 表3- 1、不連續面調查表格 25 表3- 2、不連續面間距劃分標準 27 表3- 3、不連續面持續性劃分標準 27 表3- 4、不連續面內寬劃分標準 28 表3- 5、不連續面密度劃分標準 29 表3- 6、不連續面滲水情況劃分標準 30 表3- 7、完整岩石之摩擦角 36 表4- 1、南橫公路164K+82~164K+133邊坡歷年環境地質判釋面積變化表 59 表4- 2、MT01裂隙每一面向總位移變化量 74 表4- 3、MT01裂隙三軸方向位移變化 75 表4- 4、MT02裂隙每一面向位移變化量 77 表4- 5、MT02裂隙三軸方向位移變化 78 表4- 6、MT03裂隙每一面向位移變化量 80 表4- 7、MT03裂隙三軸方向位移變化 80 表4- 8、MT04裂隙每一面向位移變化量 83 表4- 9、MT04裂隙三軸方向位移變化 83 表4- 10、MT05裂隙每一面向位移變化量 86 表4- 11、MT05裂隙三軸方向位移變化 87 表4- 12、MT06裂隙每一面向位移變化量 88 表4- 13、MT06裂隙三軸方向位移變化 89 表4- 14、摩天地區各裂隙三軸位移方向變化量 90 表4- 15、GPS三軸方向位移變化量 94   圖目錄 圖1- 1、研究區域位置圖 4 圖1- 2、研究區域地質圖 7 圖2- 1、COLTOP3D軟體介面簡介 10 圖2- 2、CHEHALIS LAKE不連續面位態分析方法比對成果 11 圖2- 3、邊坡破壞類型示意圖 13 圖2- 4、潛在大規模崩塌特徵示意圖 14 圖2- 5、邊坡活動性的特徵 15 圖2- 6、阿里山隙頂集水區崩塌潛勢區GPS觀測成果 16 圖2- 7、錦園溝渠之池上斷層破裂釘網 17 圖3- 1、研究架構與流程圖 19 圖3- 2、裂縫點之標示(左)與初始座標定義(右) 23 圖3- 3、COLTOP3D分析原理圖 32 圖3- 4、COLTOP 3D原理說明圖 33 圖3- 5、邊坡破壞模式與其立體投影圖 37 圖3- 6、由不連續面控制的邊坡破壞條件圖 38 圖3- 7、極點摩擦錐示意圖 39 圖4- 1、摩天地區潛在大規模崩塌之崩塌微地形特徵套繪航照底圖 41 圖4- 2、摩天地區潛在大規模崩塌之崩塌微地形特徵圖 42 圖4- 3、南橫公路里程數174K+155~174K+405之邊坡之崩塌微地形特徵套繪航照底圖 44 圖4- 4、南橫公路里程數174K+155~174K+405之邊坡崩塌微地形特徵圖 45 圖4- 5、南橫公路里程數179K+355~179K+425之邊坡之崩塌微地形特徵套繪航照底圖 47 圖4- 6、南橫公路里程數179K+355~179K+425之邊坡崩塌微地形特徵圖 48 圖4- 7、南橫公路164K+82~164K+133邊坡之2008年莫拉克風災前福衛影像與環境地質判釋成果 50 圖4- 8、南橫公路164K+82~164K+133邊坡之2009年莫拉克風災後福衛影像與環境地質判釋成果 51 圖4- 9、南橫公路164K+82~164K+133邊坡之2010年1月16日航照與環境地質判釋成果 53 圖4- 10、南橫公路164K+82~164K+133邊坡之2015年SPOT衛星影像與環境地質判釋成果 54 圖4- 11、南橫公路164K+82~164K+133邊坡之2017年5月9日航照與環境地質判釋成果 56 圖4- 12、南橫公路164K+82~164K+133邊坡之2019年8月27日-9月4日航照與環境地質判釋成果 58 圖4- 13、摩天地區潛在大規模崩塌之崩塌微地形特徵圖 60 圖4- 14、摩天地區潛在大規模崩塌崩塌微地形特徵套繪航照底圖 61 圖4- 15、摩天地區潛在大規模崩塌空拍全景圖 62 圖4- 16、摩天地區大規模崩塌潛勢區查核點位分佈圖 64 圖4- 17、查核點1之坡面陷落導致茶樹根裸露 65 圖4- 18、查核點2坡頂處之侵蝕崖(黃色柵狀線) 65 圖4- 19、查核點3內部崩崖造成之滑動體內部凹谷地形(紅色虛線)與明顯子崩崖面(紫色柵狀線)與侵蝕崖面(黃色柵狀線)發育 66 圖4- 20、坡面北側邊緣發育多條明顯之侵蝕溝,且與南側侵蝕溝發育形成雙溝地形特徵 67 圖4- 21、查核點4坡頂道路下邊坡護坡下陷 68 圖4- 22、查核點5坡面活動產生的道路破裂面,長約30公尺,寬5公分以上 69 圖4- 23、查核點6位於坡頂處房屋傾斜與毀損 69 圖4- 24、摩天地區鋼釘監測網布設位置圖 71 圖4- 25、MT01裂隙所有面向鋼釘點位圖 73 圖4- 26、MT01裂隙觀測資料 75 圖4- 27、MT02裂隙所有面向鋼釘點位圖 76 圖4- 28、MT02裂隙觀測資料 78 圖4- 29、MT03裂隙所有面向鋼釘點位圖 79 圖4- 30、MT03裂隙觀測資料 81 圖4- 31、MT04裂隙所有面向鋼釘點位圖 82 圖4- 32、MT04裂隙觀測資料 84 圖4- 33、MT05裂隙所有面向鋼釘點位圖 85 圖4- 34、MT05裂隙觀測資料 87 圖4- 35、MT06裂隙所有面向鋼釘點位圖 88 圖4- 36、MT06裂隙觀測資料 89 圖4- 37、摩天地區各裂隙位移向量圖 91 圖4- 38、所有鋼釘監測網量測之水平向位移變化 92 圖4- 39、所有鋼釘監測網量測之垂直向位移變化 92 圖4- 40、所有鋼釘監測網向外推移位移變化 92 圖4- 41、GPS觀測站位置圖 93 圖4- 42、摩天地區GPS位移向量圖 95 圖4- 43、GPS MT02觀測資料圖 96 圖4- 44、GPS MT03觀測資料圖 97 圖4- 45、坡面降雨量觀測結果圖(2019/7/17~2019/5/24) 98 圖4- 46、MT01裂隙觀測資料、日雨量及累積雨量比對圖 101 圖4- 47、MT02裂隙觀察資料、日雨量及累積雨量比對圖 101 圖4- 48、MT03裂隙觀察資料、日雨量及累積雨量比對圖 102 圖4- 49、MT04裂隙觀察資料、日雨量及累積雨量比對圖 102 圖4- 50、MT05裂隙觀察資料、日雨量及累積雨量比對圖 103 圖4- 51、MT06裂隙觀察資料、日雨量及累積雨量比對圖 103 圖4- 52、GPS MT02觀測站資料、日雨量及累積降雨量資料比對圖 106 圖4- 53、GPS MT03觀測站資料、日雨量及累積降雨量資料比對圖 107 圖4- 54、不連續面調查露頭點分布位置及不連續面位態投影圖 109 圖4- 55、不連續面分布位置及各別不連續面位態與不連續面密度圖 109 圖4- 56、編號1號露頭不連續面位態與極點密度分布投影圖 110 圖4- 57、編號1號露頭不連續面調查分布圖 111 圖4- 58、編號2號露頭不連續面位態與極點密度分布投影圖 112 圖4- 59、編號2號露頭不連續面調查分布圖 113 圖4- 60、編號3號露頭不連續面位態與極點密度分布投影圖 114 圖4- 61、編號3號露頭不連續面調查分布圖 115 圖4- 62、編號4號露頭不連續面位態與極點密度分布投影圖 116 圖4- 63、編號4號露頭不連續面調查分布圖 117 圖4- 64、編號5號露頭不連續面位態與極點密度分布投影圖 118 圖4- 65、編號5號露頭不連續面調查分布圖 119 圖4- 66、編號6號露頭不連續面位態與極點密度分布投影圖 120 圖4- 67、編號6號露頭不連續面調查分布圖 121 圖4- 68、不連續面調查露頭點分布位置及不連續面位態投影圖 123 圖4- 69、不連續面分布位置及各別不連續面位態與不連續面密度 123 圖4- 70、編號1號露頭不連續面位態與極點密度分布投影圖 124 圖4- 71、編號1號露頭不連續面調查分布圖 125 圖4- 72、編號2號露頭不連續面位態與極點密度分布投影圖 126 圖4- 73、編號2號露頭不連續面調查分布圖 126 圖4- 74、編號3號露頭不連續面位態與極點密度分布投影圖 127 圖4- 75、編號3號露頭不連續面調查分布圖 128 圖4- 76、上邊坡楔型倒懸岩層,三維點雲經COLTOP3D軟體處理之成果展示 129 圖4- 77、上邊坡楔型倒懸岩層,三維影像對照圖 130 圖4- 78、上邊坡楔型倒懸岩層不連續面位態分布與位置圖 130 圖4- 79、楔型倒懸岩層不連續面位態與極點密度分布投影圖 132 圖4- 80、三維模型展示之楔型倒懸岩層不連續面調查分布圖 132 圖4- 81、上邊坡噴凝土護坡,三維點雲經COLTOP3D軟體處理之成果展示 133 圖4- 82、上邊坡噴凝土護坡,三維影像對照圖 134 圖4- 83、上邊坡噴凝土護坡不連續面位態分布與位置圖 134 圖4- 84、上邊坡噴凝土護坡不連續面位態與極點分布投影圖 135 圖4- 85、三維模型展示之上邊坡噴凝土護坡不連續面調查分布圖 136 圖5- 1、摩天地區潛在大規模崩塌坡面岩體破碎 137 圖5- 2、摩天地區潛在大規模崩塌河岸侵蝕判釋 138 圖5- 3、摩天地區潛在大規模崩塌侵蝕溝 139 圖5- 4、2019冠部裂隙發育情形 140 圖5- 5、擋土牆裂隙發育情形 141 圖5- 6、強降雨事件發生前,所有裂隙之鋼釘監測網位移量 143 圖5- 7、強降雨事件發生後,裂隙位移量急劇變化區間之所有裂隙鋼釘監測網位移量 143 圖5- 8、強降雨事件發生後,所有裂隙之鋼釘監測網位移量 144 圖5- 9、降雨事件發生前,單頻MT02 GPS觀測站位移量 145 圖5- 10、降雨事件發生後位移量急劇變化區間,單頻MT02 GPS觀測站位移量 146 圖5- 11、降雨事件發生後位移量趨緩區間,單頻MT02 GPS觀測站位移量 146 圖5- 12、降雨事件發生前,單頻MT03 GPS觀測站位移量 147 圖5- 13、降雨事件發生後位移量急劇變化區間,單頻MT03 GPS觀測站位移量 147 圖5- 14、降雨事件發生後位移量趨緩區間,單頻MT03 GPS觀測站位移量 148 圖5- 15、各裂隙鋼釘網點位與GPS觀測站資料水平向位移比對 150 圖5- 16、各裂隙鋼釘網點位與GPS觀測站資料垂直向位移比對 150 圖5- 17、摩天地區地表位移向量圖 151 圖5- 18、編號3號露頭COLTOP3D分析不連續面位態與極點密度分布投影圖 152 圖5- 19、編號3號露頭,三維點雲經COLTOP3D軟體處理之成果展示 153 圖5- 20、編號3號露頭,現地調查區域三維影像對照圖 153 圖5- 21、編號3號露頭不連續面位態分布與位置圖 154 圖5- 22、編號3號露頭現地調查不連續面位態與COLTOP3D位態比對圖 155 圖5- 23、下邊坡河道一側露頭不連續面位態分布與位置圖 156 圖5- 24、下邊坡河道一側露頭,三維點雲經COLTOP3D軟體處理之成果展示圖 157 圖5- 25、下邊坡河道一側露頭,現地調查區域三維影像對照圖 157 圖5- 26、下邊坡河道一側露頭不連續面位態分布與位置圖 158 圖5- 27、179K邊坡河道一側露頭現地調查不連續面位態與COLTOP3D位態比對圖 159 圖5- 28、174K楔型倒懸岩層邊坡穩定分析之平面型破壞圖 161 圖5- 29、174K楔型倒懸岩層邊坡穩定分析之楔型破壞圖 162 圖5- 30、上邊坡噴凝土護坡之邊坡穩定分析之傾覆型破壞圖 163

    千木良雅弘 (2011) 大規模崩塌潛感區。科技圖書股份有限公司,共227頁。
    王思驊 (2013) 臺灣南部橫貫公路向陽-初來段之構造與邊坡穩定。國立中央大學地球科學系碩士論文,共86頁。
    王豐仁 (1994) 玉山國家公園新中橫公路段之落石邊坡調查研究。國立成功大學地球科學系碩士論文,共141頁。
    王韻瑾 (2016) 運用UAV在公路養護工作之創新策進作為。台灣公路工程,第42卷,第1期,第2-47頁。
    史天元 (2010) 臺灣航島測量當前課題:民國一百年。航測及遙測學刊,第15巻,第3期,第299-306頁。
    北海道立総合研究機構地質研究所 (2013) 地すべり活動度評価手法マニュアル。
    北海道立総合研究機構地質研究所,共18頁。
    池上地牛故事館 (2006) 池上斷層-潛變儀Chihshang Fault。http://www.vdyco.com/exhi-2F-009-8.aspx。(上網日期7月17日, 2019年)。
    朱伯勳 (2004) GPS衛星測量於遠距地滑監測的應用研究。中原大學土木工程研究所碩士論文,共114頁。
    行政法人國家災害防救科技中心 (2015) 大規模崩塌災害防治行動綱領。第1版,新北市,國家災害防救科技中心,共34頁。
    交通部公路總局第三區養護工程處 (2019) 三工邊坡定性定量分級暨檢測圖資建置期末報告。共346頁。
    李延彥 (2010) 高雄市小林崩塌地之地質及引發山崩之機制研究。國立成功大學地球科學系碩士班碩士論文,共101頁。
    何春蓀 (1982) 臺灣地體構造的演變一臺灣地體構造圖說明書。經濟部中央地質調查所,共153頁。
    吳東洹 (2015) 地面三維雷射應用於露頭調查與不連續面粗糙度量化分析技術研究。國立臺北科技大學資源工程系碩士論文,共95頁。
    林慶偉、吳銘志與黃鎮台 (1995) 新中橫地區地質構造分析及其對崩塌地發育之影響。玉山國家公園研究叢刊(第1058號),共85頁。
    林慶偉、衣德成與黃敏郎 (2012) 空載光達數值地形─找尋潛在大規模崩塌的利器。地質,第31卷,第2期,第44-48頁。
    洪如江 (1984) 我國臺灣地區邊坡穩定的問題與坡地科技研究現況。地工技術,第7期,第4-6頁。
    侯進雄、費立沅、邱禎龍、陳宏仁、謝有忠、胡植慶與林慶偉 (2014) 空載光達數值地形產製與地質災害的應用。航測及遙測學刊,第十八卷,第2期,第93-108頁。
    徐志磬 (2018) 以低價GPS接收儀(GPS-721-MRTU)進行崩塌潛勢區地表位移監測。國立中興大學水土保持學系所碩士論文,共71頁。
    彭士睿 (2016) 地面光達點雲計量化岩體不連續面間距及延續度技術及檢定方法探討。國立臺北科技大學資源工程系碩士論文,共105頁。
    黃志杰 (2015) 應用無人載具進行邊坡調查與分析初探。國立暨南國際大學土木工程學系碩士論文,共94頁。
    張德文、鄭世豪與梁尹齡 (2005) 山坡地高樓建築住宅區災害簡易監測、預警通報與潛勢評估系統示範應用驗證研究(Ⅰ)。行政院國家科學委員會專題研究計畫成果報告(編號:NSC93-2625-Z-032-001-)。淡江大學土木工程學系,共55頁。
    費立沅與陳勉銘 (2013) 易淹水地區上游集水區地質調查及資料庫建置。經濟部中央地質調查所,共192頁。
    經濟部中央地質調查所 (2000) 臺灣地質圖。經濟部中央地質調查所。
    楊士賢 (2015) 差異侵蝕岩石邊坡之調查與穩定分析-以台2現68K附近邊坡為例。中華水土保持學報,第46卷,第1期,第38-46頁。
    楊慶雄 (2015) 利用多時序航照及數值地形模型探討新中橫對地形演育之影響。國立成功大學地球科學所碩士論文,共148頁。
    楊濟豪 (2013) 中橫公路東段沿線邊坡穩定性與其受工程地質特性影響。國立臺北科技大學資源工程系碩士論文,共198頁。
    楊濟豪 (2014) 地面光達應用於露頭不連續面調查與岩體工程特性評估探討。中華水土保持學報,第45卷,第1期,第1-18頁。
    劉彥良 (2016) 南橫公路利稻橋至霧鹿橋沿線邊坡崩塌與穩定影響因素探討。國立台北科技大學資源工程系碩士論文,共152頁。
    賴典章 (1988) 玉山國家公園關山地區地質調查曁解說規劃調查報告書。玉山國家公園研究叢刊,第1008號,共95頁。
    魏倫瑋、羅佳明、鄭添耀、鄭錦桐與冀樹勇 (2012) 深層崩塌之地貌特徵-以臺灣南部地區為例。中興工程,第115期,第35-43頁。
    Agliardi, F., Crosta, G.B. and Zanchi, A. (2001) Structural constraints on deep-seated slope deformation kinematics: Engineering Geology, vol. 59, no. 1, p. 83-102.
    Agliardi, F., Crosta, G.B., Frattini, P. and Malusà, M.G. (2013) Giant non-catastrophic landslides and the long-term exhumation of the European Alps: Earth and Planetary Science Letters, vol. 365, p. 263-274.
    Aksoy, H. and Ercanoglu, M. (2007) Fuzzified kinematic analysis of discontinuity-controlled rock slope instabilities: Engineering Geology, vol. 89, p. 206-219.
    Allmendinger R.W. (2019) Stereonet v.10.2.9. (Shareware software, http://www.geo.cornell.edu/geology/faculty/RWA/programs/stereonet.html), Dept. of Geological Sciences, Cornell University, Ithaca.
    Angelier, J., Chu, H.T. and Lee, J.C. (1997) Shear concentration in a collision zone: Kinematics of the Chihshang fault as revealed by outcrop-scale quantification of active faulting, Longitudinal Valley, eastern Taiwan: Tectonophysics, vol. 274, p. 117 – 143.
    Angelier, J., Chu, H.T., Lee, J.C. and Hu, J.C. (2000) Active faulting and earthquake hazard: The case study of the Chihshang Fault, Taiwan: Journal of Geodynamics, vol. 29, p. 151-185.
    Brideau, M.A., Sturzenegger, M., Stead, D., Jaboyedoff, M., Lawrence, M., Roberts, N.J., Ward, B.C., Millard, T.H. and Clague, J.J. (2012) Stability analysis of the 2007 Chehalis lake landslide based on long-range terrestrial photogrammetry and airborne LiDAR data: Landslides, vol. 9, p. 75–91.
    Brown, E.T. (1981) Rock Characterization Testing and Monitoring: ISRM Suggested Methods, Pergamon Press, Oxford, 211 p.
    Chigira, M. and Kiho, K. (1994) Deep-seated rockslide-avalanches preceded by mass rock creep of sedimentary rocks in the Akaishi Mountains, central Japan: Engineering Geology, vol. 38, p. 221-230.
    Crosta, G.B., Frattini, P. and Agliardi, F. (2013) Deep seated gravitational slope deformations in the European Alps: Tectonophysics, vol. 605, p. 13-33.
    Cruden (1993) Multilingual Landslide Glossary, Canadian Geotechnical Society, 80 p.
    Dahal, R.K., Hasegawa, S., Nonomura, A., Yamanaka, M., Masuda, T. and Nishino, K. (2008) GIS-based weights-of-evidence modelling of rainfallinduced landslides in small catchments for landslide susceptibility mapping: Environmental Geology, vol. 54, p. 311–324.
    Goodman, R.E. (1978) Methods of Geological Engineering in Discontinuous Rocks, Wiley, New York, USA, 472 p.
    Goodman, R.E. (1989) Introduction to Rock Mechanics, 2nd edition. Wiley, New York, USA, 289 p.
    Görüm, T. (2019) Landslide recognition and mapping in a mixed forest environment from airborne LiDAR data: Engineering Geology, vol. 258, p. 105-155.
    Highland, L.M. and Bobrowsky, P.T. (2008) The landslide handbook—A guide to understanding landslides: Reston, Virginia, U.S. Geological Survey Circular 1325, 129 p.
    Hoek, E. and Bray, J.W. (1977) Rock Slope Engineering, 2nd edition. Wiley, New York, p. 42-49.
    Hoek, E. and Bray, J.W. (1977) Rock Slope Engineering, 3rd edition. The Institution of Mining and Metallurgy, London, p. 53-61.
    I.S.R.M. (1978) Suggested methods for the quantitative description of discontinuities in rock masses: International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, vol. 15, p. 319-368.
    James, N.O., Norbert, H.M., Xialing, L. and Duan, Y. (2013) Verification of a 3-D LiDAR Viewer for Discontinuity Orientations: Rock Mechanics and Rock Engineering, vol. 46, p. 543-554.
    John, J.C. and Douglas, S. (2012) Landslides: Types, Mechanisms and Modeling. Engineering geomorphology of landslides (Edited by Griffiths, J.S. and Whitworth, M.), p. 172-186, Cambridge University Press, New York, USA.
    Lacerda, W.A., Ehrlich. M. Fontoura, A.B. and Sayo. A (2004) Landslides: Evaluation and Stabilization/Glissement de Terrain: Evaluation et Stabilisation, Set of 2 Volumes. New insight of geomorphology and landslide prone area detection using DEM (Edited by Jaboyedoff, M., Baillifard, F., Couture, R., Locat, J., and Locat, P.), p. 199-205, Rio de Janeiro, Brazil.
    Lee, J.C., Chu, H.T., Angelier, J., Hu, J.C., Chen, H.Y. and Yu, S.B. (2006) Quantitative analysis of surface coseismic faulting and postseismic creep accompanying the 2003, Mw = 6.5, Chengkung earthquake in eastern Taiwan: Journal of Geophysical Research: Solid Earth, vol. 111, B02405.
    Luzon, P.K., Montalbo, K.P., Galang, J.A.M., Sabado, J.M., Escape, C.M., Felix, R.P. and Lagmay, A.M.F. (2015) Structurally controlled hazard mapping of Southern Leyte, Philippines: Natural Hazards and Earth System Sciences Discussions, vol. 3, Issue 10, p. 5891-5921.
    Matthew, J.L., Diederichs, M.S., Hutchinson, D.J. and Harrap, R. (2009) Optimization of LiDAR scanning and processing for automated structural evaluation of discontinuities in rockmasses: International Journal of Rock Mechanics and Mining Sciences, vol. 46(1), p. 194-199.
    Metzger, R., Jaboyedoff, M., Oppikofer, T., Viero, A. and Galgaro, A. (2009) Coltop3D: A New Software for Structural Analysis with High Resolution 3D Point Clouds and DEM. Proceedings of the Frontiers + Innovation CSPG CSEG CWLS Convention, Calgary, Alberta (Canada), 4-8 May 2009.
    Norrish, N.I. and Wyllie, D.C. (1996) Rock slope stability analysis. Landslides: Investigation and mitigation (Edited by Turner, A.K. and Schuster, R.L.), Chapter 15, Transportation Research Board Special Report, 247, p. 391-425.
    Parise, M. and Wasowski, J. (1999) Landslide activity maps for landslide hazard evaluation: three case studies from Southern Italy: Natural Hazards, vol. 20, p. 159‐183.
    Pedrazzini, A., Jaboyedoff M., Loye A. and Derron M.H. (2013) From deep seated slope deformation to rock avalanche: Destabilization and transportation models of the Sierre landslide (Switzerland), Tectonophysics, vol. 605, p. 149-168.
    Pradhan, B. (2017) Laser scanning applications in landslide assessment. Laser scanning systems in landslide studies (Edited by Pradhan, B. and Sameen, M.I.), p. 3–19. Springer Verlag, Berlin.
    Priest, S.D. (1993) Discontinuity Analysis for Rock Engineering, Chapman and Hall, London, 473 p.
    Reik, G.A. and Currie, J.B. (1974) A study of relations between rock fabric and joints in sandstones: Canadian Journal of Earth Sciences, vol. 11, p. 1253-1268.
    Rotonda, T., Cecconi, M., Silvestri, F. and Tommasi, P. (2015) Volcanic rocks and soils. Rock fall instabilities and safety of visitors in the historic rock cut monastery of Vardzia (Georgia) (Edited by Margottini, C., Spizzichino, D., Crosta, G.B., Frattini, P., Mazzanti, P., Scarascia, Mugnozza, G. and Beninati, L.), p. 371-378, CRC press Balkema, Taylor and Francis Group.
    Stini, J. (1941) Unsere Taler wachsen zu: Geologie and Bauwesen, vol. 18, p. 71-79.
    TERRANUM (2011) Coltop3D v.1.8.4. (Shareware software, https://www.terranum.ch/en/products/coltop3d/), LIDAR data processing and analyzing software for geologists. Dept. of Institute of Earth Sciences, Lausanne University, Switzerland.
    Turner, A.K. and Schuster, R.L. (1996) Landslides: Investigation and Mitigation. Landslide Types and Processes (Edited by Cruden, D.M. and Varnes, D.J.), p. 36-75. Transportation Research Board, USA.
    Turner, A.K. and Schuster, R.L. (1996) Landslides: Investigation and Mitigation. Rock slope stability analysis (Edited by Norrish, N.I. and Wyllie, D.C.), p. 391-424. Transportation Research Board, USA.
    Varnes, D.J. (1978) Slope movement types and processes: Landslides, Analysis and Control, Spec. Rep., 176, Proceedings of the National Academy of Sciences, Washington D.C., p. 11–35.
    Wang, W.N., Chigira, M. and Furuya, T. (2003) Geological and geomorphological precursors of the Chiu-fen-erh-shan landslide triggered by the Chi-chi earthquake in central Taiwan: Engineering Geology, 69, p. 1-13.
    West, T.R. and Cho, K.H. (2007) Rock Slope Stability of the VMT, Prince William Sound Regional Citizen’s Advisory Council, 107 p.
    Wyllie, D.C. and Mah, C.W. (2004) Rock slope engineering: Civil and mining, 4th edition. Taylor and Francis, 456 p.
    Yatsu, E. (1975) Mass Wasting. 4th Guelph Symposium on Geomorphology. The influence of discontinuities on the stability of rock slopes (Edited by Cruden, D.M.), p. 57-67, Geoabstracts, Norwich.

    下載圖示 校內:2025-08-01公開
    校外:2025-08-01公開
    QR CODE