簡易檢索 / 詳目顯示

研究生: 王奕婷
Wang, I-Ting
論文名稱: 網路外部性產品之創新擴散模型研究
A study of innovation diffusion model with network externality
指導教授: 耿伯文
Kreng, Victor B.
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 74
中文關鍵詞: 網路外部性關鍵多數擴散模型
外文關鍵詞: Network externality, Critical mass, Diffusion model
相關次數: 點閱:137下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 資訊科技與網際網路的日新月異,許多企業的商業模式成功關鍵取決於產品網路外部性(Network externality)的使用人數連結價值,例如:Facebook社群網站、亞太電信網內互打免費方案和Apple Inc.推出互補性產品iTunes Store刺激iPod的銷售業績等。這些商業模式的競爭法則是當企業或某一商品或服務擁有較多的安裝基礎(Installed base)時,則更易於在人際網絡中發揮網路外部性,啟動正回饋效果進而再度擴大使用者規模。本研究將探討在網路外部性影響下創新擴散的情形,並利用模型進行銷售預測分析。

    傳統擴散模型(Bass, 1969;Kalish, 1985;and other)將新產品被採用之過程隨著不同產品生命週期階段描述出來,且可透過產品過去之銷售資料預測未來銷售發展,但在過去許多擴散模型的延伸研究中,所專注的都是消費性耐久財,普遍忽略了網路外部性效果對新產品銷售之影響,因此本研究以Bass (1969)的Bass模型為基礎,將現今網路外部性現象考量至模型中,發展出一個易於使用與預測之工具。以社群網站Facebook使用者人數與互補性產品如iPod及其線上音樂商店iTunes Store之銷售資料,分別作為直接與間接網路外部性模型之實證研究對象。

    本研究發現模型中加入網路外部性因素的考量後,修正模型的模型配適度與解釋能力皆比Bass模型更準確,且分析產品關鍵多數(Critical mass)後,透過修正模型的參數估計值可以了解不同銷售時期下影響產品擴散速度的因素。另一方面,研究發現網路外部性強度會影響達到關鍵多數所需要的時間,因此廠商可依據修正模型參數估計的結果,作為協助企業行銷策略擬定和商業模式建立的參考依據。

    For some product categories, such as fax, telephone and social network services, the utility of a product depends on the number of consumers who have adopted the product. For some others, such as DVD player, digital TV, computer and smart phone, it depends on the availability of complementary products. The former effect is referred to as direct network externalities and the latter is as indirect network externalities in the literature. In the market with network externalities, managers need to evaluate when achieving the critical mass, which is the minimal number of adopters of an interactive innovation for the further rate of adoption to be self-sustaining. The rate of adoption is slowly diffused in the early stage of diffusion, and that the rate of adoption increases fast after the critical mass is reached. Therefore, managers change marketing strategies over time in order to sale product efficiently.

    Although diffusion modeling has been researched extensively for the past 40 years, it doesn’t consider the diffusion processes of the product with network externality. This study develops two models that consider the direct network externality and indirect network externality separately. The diffusion model for products with direct network externality was applied to forecast active users of Facebook and the diffusion model for products with indirect network externality was applied to forecast sales of iPod and iTunes Store. When compared to Bass model, both of them showed better performances in forecasting long-term sales. Besides, this study focuses on network externality and critical mass. Diffusion modeling, the study field in marketing that seeks to understand the spread of innovations throughout their life cycle, has adapted to describe and model these influences.

    摘要 ................................................................... i Abstract .............................................................. ii 致謝 ................................................................. iii 目錄 .................................................................. iv 表目錄 ................................................................ vi 圖目錄 ............................................................... vii 第一章 緒論 ............................................................ 1 第一節 研究背景與動機 ................................................ 1 第二節 研究動機 ...................................................... 2 第三節 研究目的 ...................................................... 3 第四節 研究流程 ...................................................... 4 第二章 文獻探討 ........................................................ 6 第一節 網路外部性 .................................................... 6 第二節 關鍵多數 ...................................................... 9 第三節 擴散模型 ..................................................... 13 第四節 網路外部性的擴散模型 ......................................... 20 第五節 參數估計與模型評估準則 ....................................... 24 第三章 直接網路外部性模型 ............................................. 29 第一節 研究模式 ..................................................... 30 第二節 實證結果與分析 ............................................... 33 第四章 間接網路外部性模型 ............................................. 49 第一節 研究模式 ..................................................... 50 第二節 實證結果與分析 ............................................... 52 第五章 結論與建議 ..................................................... 67 第一節 研究結論 ..................................................... 67 第二節 未來研究方向 ................................................. 70 參考文獻 .............................................................. 72

    Baraldi, A. L. (2008). Network externalities and critical mass in the mobile telephone network: a panel data estimation. Munich Personal RePEc Archive.
    Bass, F. M. (1969). A new product growth model for consumer durables. Management Science, 15(5), 215-227.
    Bayus, B. L. (1987). Forecasting sales of new contingent products: An application to the compact disc market. Journal of Product Innovation Management, 4(4), 243-255.
    Bucklin, L. P., & Senqupta, S. (1993). The co-diffusion of complementary innovations: supermarket scanners and UPC symbols. The Journal of Product Innovation Management, 10(2), 148-160.
    Chien, C. S., & Moutinho, L. (2000). The external contingency and internal characteristic of relationship marketing. Journal of Marketing Management, 16(6), 583-595.
    Chun, S. Y., & Hahn, M. (2008). A diffusion model for products with indirect network externalities. Journal of Forecasting, 27(4), 357-370.
    Cox, W. E. (1967). Product life cycles as marketing models. The Journal of Business, 40(4), 375-384.
    Easingwood, C. J., Mahajan, V., & Muller, E. (1983). A nonuniform influence innovation diffusion model of new product acceptance. Marketing Science, 2(3), 273-295.
    Goldenberg, J., Libai, B., & Muller, E. (2010). The chilling effects of network externalities. International Journal of Research in Marketing, 27(1), 4-15.
    Golder, P. N., & Tellis, G. J. (2004). Growing, growing, gone: Cascades, diffusion, and turning points in the product life cycle. Marketing Science, 23(2), 207-218.
    Grajek, M. (2010). Estimating network effects and compatibility: Evidence from the Polish mobile market. Information Economics and Policy, 22(2), 130-143.
    Granovetter, M. (1978). Threshold models of collective behavior. The American Journal of Sociology, 83(6), 1420-1443.
    Gupta, S., Jain, D. C., & Sawhney, M. (1999). Modeling the evolution of markets with indirect network externality: an application to digital television. Marketing Science, 18(3), 396-416.
    Jang, S. L., Dai, S. C., & Sung, S. (2005). The pattern and externality effect of diffusion of mobile telecommunications: the case of the OECD and Taiwan. Information Economics and Policy, 17(2), 133-148.
    Katz, M., & Shapiro, C. (1985). Network externality, competition, and compatibility. American Economic Review, 75(3), 424-440.
    Kim, N., Chang, D. R., & Shocker, A. D. (2000). Modeling intercategory and generational dynamics for a growing information technology industry. Management science, 496-512.
    Lehmann, D. R., & Esteban-Bravo, M. (2006). When giving some away makes sense to jump-start the diffusion process. Marketing Letters, 17(4), 243-254.
    Lim, B. L., Choi, M., & Park, M. C. (2003). The late take-off phenomenon in the diffusion of telecommunication services: network effect and the critical mass. Information Economics and Policy, 15(4), 537-557.
    Mahajan, V., & Muller, E. (1998). When is it worthwhile targeting the majority instead of the innovators in a new product launch? Journal of Marketing Research, 35(4), 488-495.
    Mahajan, V., Muller, E., & Bass, F. M. (1990). New product diffusion models in marketing: a review and direction for research. Journal of Marketing, 54(1), 1-26.
    Mahajan, V., & Peterson, R. A. (1978). Innovation diffusion in a dynamic potential adopter population. Management Science, 24(15), 1589-1597.
    Meade, N., & Islam, T. (2006). Modelling and forecasting the diffusion of innovation-A 25-year review. International Journal of Forecasting, 22(3), 519-545.
    Norton, J. A., & Bass, F. M. (1987). A diffusion theory model of adoption and substitution for successive generations of high-technology products. Management science, 33(9), 1069-1086.
    Peterson, R. A., & Mahajan, V. (1978). Multi-product growth models. (Vol. 1). Greenwich, CT: JAI Press.
    Reinartz, W., & Kumar, V. (2002). The mismanagement of customer loyalty. Harvard business review, 80(7), 86-95.
    Rogers, E. M. (1962). Diffusion of Innovation. New York, NY: The Free Press.
    Rogers, E. M. (1995). Diffusion of innovation (Vol. 4): New York: Free Press.
    Rogers, E. M. (2003). Diffusion of innovation. New York, NY: The Free Press.
    Rohlfs, J. (1974). A theory of interdependent demand for a communications service. The Bell Journal of Economics and Management Science, 5(1), 16-37.
    Schelling, T. C. (1978). Micromotives and macrobehavior. New York, NY: W. W. Norton.
    Schmittlein, D. C., & Mahajan, V. (1982). Maximum likelihood estimation for an innovation diffusion model of new product acceptance. Marketing Science, 1(1), 57-78.
    Shankar, V., & Bayus, B. L. (2003). Network effects and competition: An empirical analysis of the home video game industry. Strategic Management Journal, 24(4), 375-384.
    Shy, O. (2001). The economics of network industries.
    Srinivasan, V., & Mason, C. H. (1986). Nonlinear least squares estimation of new product diffusion models. Marketing Science, 5(2), 169-178.
    Takata, T. (2009). Platform management strategy in different network externality conditions. Yokohama Journal of Social Sciences, 14(3), 131-149.
    Vanhonacker, W. R., Lehmann, D. R., & Sultan, F. (1990). Combining related and sparse data in linear regression models. Journal of Business & Economic Statistics, 8(3), 327-335.
    Varian, H. R., & Shapiro, C. (1999). Information rules: a strategic guide to the network economy. Harvard Business School Press, Cambridge.
    Viswanathan, S. (2005). Competing across technology-differentiated channels: the impact of network externalities and switching costs. Management science, 51(3), 483-496.
    Wang, F., Yan, F., & Hou, Y. (2007). The Influence of Network Externality on Technology Diffusion, Shanghai.
    Williams, F., Rice, R. E., & Rogers, E. M. (1988). Research methods and the new media. New York, NY: The Free Press.
    Wu, F. S., & Chu, W. L. (2010). Diffusion models of mobile telephony. Journal of Business Research, 63(5), 497-501.

    Apple Inc., Apple Reports 2001-2010 Quarter Results, Press release, http://www.apple.com/about/
    Facebook, Blog post 2004-2010, http://blog.facebook.com/blog.php?post=28111272130

    無法下載圖示 校內:2020-02-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE