簡易檢索 / 詳目顯示

研究生: 張樑竹
Chang, Liang-Chu
論文名稱: 長期棕櫚酸注射小鼠模型對海馬迴脂毒性的影響
Effects of lipotoxicity on the hippocampus using chronic palmitic acid-injected mice model
指導教授: 陳珮君
Chen, Pei-Chun
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 56
中文關鍵詞: 棕櫚酸脂毒性KATP通道格列本脲
外文關鍵詞: Palmitic acid, lipotoxicity, KATP channel, glibenclamide
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 最近研究指出長期不良的飲食習慣可能導致下視丘發炎和神經膠質增生,在其他大腦區域也可能受到影響。脂肪細胞通常在體內扮演儲存脂質的角色,可以很好地處理多餘的脂質。然而,過量的脂質累積將使這些脂肪細胞過載,並導致脂質累積到非脂肪細胞中,這時就會產生脂毒性。脂毒性是一種代謝綜合症,是由脂質累積到非脂肪組織而產生,這樣會導致細胞功能出現障礙和死亡。通常受影響的組織包括腎臟,肝臟,心臟和骨骼肌。游離脂肪酸的過載導致胰腺β細胞凋亡和功能障礙。 第II型糖尿病是全球最普遍的代謝綜合徵,脂肪酸的全身水平升高現被認為是該綜合徵進展的重要因素,脂毒性被認為與肥胖和糖尿病有關。棕櫚酸(PA)是飲食和血清中存在的最豐富的游離脂肪酸,棕櫚酸的積累會誘發脂毒性,也會引起內質網壓力和線粒體功能障礙。已知用PA處理的INS-1細胞會損害葡萄糖刺激的胰島素分泌。注射PA的慢性小鼠由於ATP敏感性鉀通道(KATP)通道的缺陷運輸而表現出第II型糖尿病特徵,因為胰腺β細胞- KATP通道對於胰島素分泌至關重要。神經變性疾病的共同特徵是神經炎症反應的發生,其中涉及神經膠質細胞死亡的膠質細胞(主要是小膠質細胞和星形膠質細胞)的細胞過程被激活。而興奮性中毒是突觸的谷氨酸和鈣平衡的改變導致神經元和神經膠質谷氨酸的受體過度活化,最終導致神經元死亡和神經迴路功能障礙。微膠細胞是最不易受興奮性毒性影響的神經膠質細胞類型,因為它們在反應時主要表達谷氨酸受體。如果暴露於興奮性毒性的時間或強度受到限制,這種炎症的益處可能會很大,有助於避免進一步的神經元損傷。否則,小膠質細胞的作用將通過長期的ROS形成和細胞因子分泌而有害,並直接與神經退行性過程有關。實際上,積累的證據表明衰老的小膠質細胞在退行性中樞神經系統疾病中具有直接的致病作用。通過控制小膠質細胞線粒體活性來調節小膠質細胞活性構成了一種創新的方法來干擾神經變性過程。腺核甘三磷酸敏感鉀離子通道(KATP)是包含4個SUR1和4個Kir6.2亞基的八聚體複合物,由細胞[ATP]和[ADP]門閥控制。藉由KATP通道是控制小膠質細胞活性避免其毒性表型並促進疾病。在大腦中,已經在黑質,新皮層,海馬和下丘腦中描述了KATP的神經元表達。在小膠質細胞中也已經提出了KATP通道的表達。先前的研究表明,在腦部疾病例如中風和阿爾茨海默氏病(AD)發生後,反應性小膠質細胞會增加其KATP通道成SUR1的表達。

    Prolonged poor dietary habits can result in hypothalamic inflammation and gliosis with more recent studies suggest that other brain areas may also be affected. Adipocytes usually play the role of storing lipids in the body and can handle excess lipids well. However, excessive lipid accumulation will overload these adipocytes and lead to accumulation of lipids in non-adipocytes, which can lead to lipotoxicity. Lipotoxicity is a metabolic syndrome that is caused by the accumulation of lipids in non-fat tissues, which can lead to cell dysfunction and death. Commonly affected tissues include the kidneys, liver, heart, and skeletal muscles. The overload of free fatty acids leads to apoptosis and dysfunction of pancreatic β-cells. Type II diabetes is the most common metabolic syndrome in the world. It is now believed that elevated levels of fatty acids in the body are an important factor in the development of this syndrome, and lipotoxicity is believed to be related to obesity and diabetes. Palmitic acid (PA) is the most abundant free fatty acids present in the diet and serum, and accumulation of palmitic acid induces lipotoxicity, causes ER stress and mitochondrial dysfunction. It is known that INS-1 cells treated with PA impair glucose-stimulated insulin secretion. Chronic mice injected with PA exhibited the characteristics of type II diabetes due to defective transport of ATP-sensitive potassium channel (KATP) channels, because the pancreatic β-cell KATP channels are essential for insulin secretion. The common feature of neurodegenerative diseases is the occurrence of neuroinflammatory response, in which the cellular processes of glial cells (mainly microglia and astrocytes) involved in the death of glial cells are activated. Excitatory poisoning is the alteration of synaptic glutamate and calcium balance that leads to excessive activation of neurons and glial glutamate receptors, which ultimately leads to neuronal death and neural circuit dysfunction. Microglia are the type of glial cells least susceptible to excitotoxicity because they mainly express glutamate receptors in response. If the time or intensity of exposure to excitotoxicity is limited, the benefits of this inflammation may be great, helping to avoid further neuronal damage. Otherwise, the effects of microglia will be harmful through long-term ROS formation and cytokine secretion, and are directly related to the neurodegenerative process. In fact, accumulated evidence indicates that aging of microglia has a direct pathogenic role in degenerative central nervous system diseases. Regulating the activity of microglia by controlling the mitochondrial activity of microglia constitutes an innovative method to interfere with the neurodegenerative process.
    ATP sensitive potassium channel (KATP), the octamer complex containing 4 SUR1 and 4 Kir6.2 subunits, is gated by the cellular [ATP] and [ADP]. KATP channels are used to control the activity of microglia to avoid their toxic phenotype and promote disease. In the brain, the neuronal expression of KATP has been described in the substantia nigra, neocortex, hippocampus, and hypothalamus. The expression of KATP channels has also been proposed in microglia. Previous studies have shown that after brain diseases such as stroke and Alzheimer's disease (AD), reactive microglia increase the expression of their KATP channel into SUR1.

    中文摘要 I Abstract III Acknowledgments V Contents VI Figure Contents IX Introduction 1 Lipotoxicity 1 Palmitic acid 2 Palmitic acid induces pathology 3 Hippocampus 4 Lipid metabolism in the central nervous system 6 Neurodegeneration and Microglia 7 Role of ATP sensitive potassium channel (KATP) 8 Glibenclamide 8 Apolipoprotein E 9 Lipoprotein lipase 10 NLRP3 11 Research rationales and hypothesis 12 Specific Aims 13 Materials and methods 14 Antibodies 14 Chemicals 15 Animals 15 Establishment of chronic PA-injected mice model 15 PA Solution 16 Rotarod test 16 Open field test 16 Tail suspension test 17 Elevated plus maze test 17 Spontaneous alternation test 18 Novel object recognition test 18 Immunohistochemistry 19 Click-iT™ Plus TUNEL Assay 20 Immunofluorescence examination and BODIPY staining 21 Western blot 22 Microscope examination 23 Softwares using in data analysis 23 Gene expression analysis 24 Statistical analysis 24 Results 26 Discussion 34 Conclusion 36 Reference 49

    Abdelaal, M., le Roux, C.W., Docherty, N.G., 2017. Morbidity and mortality associated with obesity. Ann Transl Med 5, 161.
    Aguilar-Bryan, L., Clement, J.P.t., Gonzalez, G., Kunjilwar, K., Babenko, A., Bryan, J., 1998. Toward understanding the assembly and structure of KATP channels. Physiol Rev 78, 227-245.
    Al-Kuraishy, H.M., Al-Gareeb, A.I., 2016. Erectile Dysfunction and Low Sex Drive in Men with Type 2 DM: The Potential Role of Diabetic Pharmacotherapy. J Clin Diagn Res 10, FC21-FC26.
    Alkhouri, N., Dixon, L.J., Feldstein, A.E., 2009. Lipotoxicity in nonalcoholic fatty liver disease: not all lipids are created equal. Expert Rev Gastroenterol Hepatol 3, 445-451.
    Anderson, D.H., Ozaki, S., Nealon, M., Neitz, J., Mullins, R.F., Hageman, G.S., Johnson, L.V., 2001. Local cellular sources of apolipoprotein E in the human retina and retinal pigmented epithelium: implications for the process of drusen formation. Am J Ophthalmol 131, 767-781.
    Atoji, Y., Wild, J.M., 2006. Anatomy of the avian hippocampal formation. Rev Neurosci 17, 3-15.
    Balsells, M., Garcia-Patterson, A., Sola, I., Roque, M., Gich, I., Corcoy, R., 2015. Glibenclamide, metformin, and insulin for the treatment of gestational diabetes: a systematic review and meta-analysis. BMJ 350, h102.
    Baxter, M.G., 2012. Quieting the overactive hippocampus restores memory in aging. Trends Cogn Sci 16, 360-361.
    Beltrand, J., Busiah, K., Vaivre-Douret, L., Fauret, A.L., Berdugo, M., Cave, H., Polak, M., 2020. Neonatal Diabetes Mellitus. Front Pediatr 8, 540718.
    Bird, C.M., Burgess, N., 2008. The hippocampus and memory: insights from spatial processing. Nat Rev Neurosci 9, 182-194.
    Boschert, U., Merlo-Pich, E., Higgins, G., Roses, A.D., Catsicas, S., 1999. Apolipoprotein E expression by neurons surviving excitotoxic stress. Neurobiol Dis 6, 508-514.
    Bruce, K.D., Zsombok, A., Eckel, R.H., 2017. Lipid Processing in the Brain: A Key Regulator of Systemic Metabolism. Front Endocrinol (Lausanne) 8, 60.
    Burgess, N., Maguire, E.A., O'Keefe, J., 2002. The human hippocampus and spatial and episodic memory. Neuron 35, 625-641.
    Campbell, S., Macqueen, G., 2004. The role of the hippocampus in the pathophysiology of major depression. J Psychiatry Neurosci 29, 417-426.
    Chang, C.Y., Ke, D.S., Chen, J.Y., 2009. Essential fatty acids and human brain. Acta Neurol Taiwan 18, 231-241.
    Chao, R.Y., Cheng, C.H., Wu, S.N., Chen, P.C., 2018. Defective trafficking of Kv2.1 channels in MPTP-induced nigrostriatal degeneration. J Neurochem 144, 483-497.
    Christian, K.M., Thompson, R.F., 2003. Neural substrates of eyeblink conditioning: acquisition and retention. Learn Mem 10, 427-455.
    Craig, T.J., Ashcroft, F.M., Proks, P., 2008. How ATP inhibits the open K(ATP) channel. J Gen Physiol 132, 131-144.
    Deadwyler, S.A., Foster, T.C., Hampson, R.E., 1987. Processing of sensory information in the hippocampus. CRC Crit Rev Clin Neurobiol 2, 335-355.
    DeFronzo, R.A., 2004. Dysfunctional fat cells, lipotoxicity and type 2 diabetes. Int J Clin Pract Suppl, 9-21.
    Deisseroth, K., 2014. Circuit dynamics of adaptive and maladaptive behaviour. Nature 505, 309-317.
    Ding, S., Xu, S., Ma, Y., Liu, G., Jang, H., Fang, J., 2019. Modulatory Mechanisms of the NLRP3 Inflammasomes in Diabetes. Biomolecules 9.
    Diwan, V., Gobe, G., Brown, L., 2014. Glibenclamide improves kidney and heart structure and function in the adenine-diet model of chronic kidney disease. Pharmacol Res 79, 104-110.
    Drosatos, K., Schulze, P.C., 2013. Cardiac lipotoxicity: molecular pathways and therapeutic implications. Curr Heart Fail Rep 10, 109-121.
    Eichenbaum, H., 2001. The hippocampus and declarative memory: cognitive mechanisms and neural codes. Behav Brain Res 127, 199-207.
    Fanselow, M.S., Dong, H.W., 2010. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65, 7-19.
    Franco, C.C.S., Prates, K.V., Previate, C., Moraes, A.M.P., Matiusso, C.C.I., Miranda, R.A., de Oliveira, J.C., Tofolo, L.P., Martins, I.P., Barella, L.F., Ribeiro, T.A., Malta, A., Pavanello, A., Francisco, F.A., Gomes, R.M., Alves, V.S., Moreira, V.M., Rigo, K.P., Almeida, D.L., de Sant Anna, J.R., Prado, M., Mathias, P.C.F., 2017. Glibenclamide treatment blocks metabolic dysfunctions and improves vagal activity in monosodium glutamate-obese male rats. Endocrine 56, 346-356.
    French, M.A., Sundram, K., Clandinin, M.T., 2002. Cholesterolaemic effect of palmitic acid in relation to other dietary fatty acids. Asia Pac J Clin Nutr 11 Suppl 7, S401-407.
    Gong, T., Yang, Y., Jin, T., Jiang, W., Zhou, R., 2018a. Orchestration of NLRP3 Inflammasome Activation by Ion Fluxes. Trends Immunol 39, 393-406.
    Gong, Z., Pan, J., Shen, Q., Li, M., Peng, Y., 2018b. Mitochondrial dysfunction induces NLRP3 inflammasome activation during cerebral ischemia/reperfusion injury. J Neuroinflammation 15, 242.
    Graeber, M.B., Streit, W.J., 2010. Microglia: biology and pathology. Acta Neuropathol 119, 89-105.
    Guilherme, A., Virbasius, J.V., Puri, V., Czech, M.P., 2008. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 9, 367-377.
    Hanamsagar, R., Torres, V., Kielian, T., 2011. Inflammasome activation and IL-1beta/IL-18 processing are influenced by distinct pathways in microglia. J Neurochem 119, 736-748.
    Harijith, A., Ebenezer, D.L., Natarajan, V., 2014. Reactive oxygen species at the crossroads of inflammasome and inflammation. Front Physiol 5, 352.
    Hartley, T., Lever, C., Burgess, N., O'Keefe, J., 2014. Space in the brain: how the hippocampal formation supports spatial cognition. Philos Trans R Soc Lond B Biol Sci 369, 20120510.
    Hauser, P.S., Narayanaswami, V., Ryan, R.O., 2011. Apolipoprotein E: from lipid transport to neurobiology. Prog Lipid Res 50, 62-74.
    Hayashi, H., 2011. Lipid metabolism and glial lipoproteins in the central nervous system. Biol Pharm Bull 34, 453-461.
    Heneka, M.T., Kummer, M.P., Stutz, A., Delekate, A., Schwartz, S., Vieira-Saecker, A., Griep, A., Axt, D., Remus, A., Tzeng, T.C., Gelpi, E., Halle, A., Korte, M., Latz, E., Golenbock, D.T., 2013. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature 493, 674-678.
    Huang, C.W., Huang, C.C., Cheng, J.T., Tsai, J.J., Wu, S.N., 2007. Glucose and hippocampal neuronal excitability: role of ATP-sensitive potassium channels. J Neurosci Res 85, 1468-1477.
    Huang, Y., Mahley, R.W., 2014. Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer's diseases. Neurobiol Dis 72 Pt A, 3-12.
    Ioannou, M.S., Jackson, J., Sheu, S.H., Chang, C.L., Weigel, A.V., Liu, H., Pasolli, H.A., Xu, C.S., Pang, S., Matthies, D., Hess, H.F., Lippincott-Schwartz, J., Liu, Z., 2019. Neuron-Astrocyte Metabolic Coupling Protects against Activity-Induced Fatty Acid Toxicity. Cell 177, 1522-1535 e1514.
    Jiang, X.S., Chen, X.M., Wan, J.M., Gui, H.B., Ruan, X.Z., Du, X.G., 2017. Autophagy Protects against Palmitic Acid-Induced Apoptosis in Podocytes in vitro. Sci Rep 7, 42764.
    Karasawa, T., Takahashi, M., 2017. Role of NLRP3 Inflammasomes in Atherosclerosis. J Atheroscler Thromb 24, 443-451.
    Kettenmann, H., Hanisch, U.K., Noda, M., Verkhratsky, A., 2011. Physiology of microglia. Physiol Rev 91, 461-553.
    Kim, J., Basak, J.M., Holtzman, D.M., 2009. The role of apolipoprotein E in Alzheimer's disease. Neuron 63, 287-303.
    Kim, J.Y., Lee, H.J., Lee, S.J., Jung, Y.H., Yoo, D.Y., Hwang, I.K., Seong, J.K., Ryu, J.M., Han, H.J., 2017. Palmitic Acid-BSA enhances Amyloid-beta production through GPR40-mediated dual pathways in neuronal cells: Involvement of the Akt/mTOR/HIF-1alpha and Akt/NF-kappaB pathways. Sci Rep 7, 4335.
    Kimura, R., Kang, S., Takahashi, N., Usami, A., Matsuki, N., Fukai, T., Ikegaya, Y., 2011. Hippocampal polysynaptic computation. J Neurosci 31, 13168-13179.
    Lanfranco, M.F., Sepulveda, J., Kopetsky, G., Rebeck, G.W., 2021. Expression and secretion of apoE isoforms in astrocytes and microglia during inflammation. Glia 69, 1478-1493.
    Lau, A., Tymianski, M., 2010. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 460, 525-542.
    Levita, L., Bois, C., Healey, A., Smyllie, E., Papakonstantinou, E., Hartley, T., Lever, C., 2014. The Behavioural Inhibition System, anxiety and hippocampal volume in a non-clinical population. Biol Mood Anxiety Disord 4, 4.
    Lopez-Redondo, F., Nakajima, K., Honda, S., Kohsaka, S., 2000. Glutamate transporter GLT-1 is highly expressed in activated microglia following facial nerve axotomy. Brain Res Mol Brain Res 76, 429-435.
    Louvrier, C., Assrawi, E., El Khouri, E., Melki, I., Copin, B., Bourrat, E., Lachaume, N., Cador-Rousseau, B., Duquesnoy, P., Piterboth, W., Awad, F., Jumeau, C., Legendre, M., Grateau, G., Georgin-Lavialle, S., Karabina, S.A., Amselem, S., Giurgea, I., 2020. NLRP3-associated autoinflammatory diseases: Phenotypic and molecular characteristics of germline versus somatic mutations. J Allergy Clin Immunol 145, 1254-1261.
    Lovett-Barron, M., Kaifosh, P., Kheirbek, M.A., Danielson, N., Zaremba, J.D., Reardon, T.R., Turi, G.F., Hen, R., Zemelman, B.V., Losonczy, A., 2014. Dendritic inhibition in the hippocampus supports fear learning. Science 343, 857-863.
    Ly, L.D., Xu, S., Choi, S.K., Ha, C.M., Thoudam, T., Cha, S.K., Wiederkehr, A., Wollheim, C.B., Lee, I.K., Park, K.S., 2017. Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Exp Mol Med 49, e291.
    Lynch, G., Kessler, M., Arai, A., Larson, J., 1990. The nature and causes of hippocampal long-term potentiation. Prog Brain Res 83, 233-250.
    Madore, C., Yin, Z., Leibowitz, J., Butovsky, O., 2020. Microglia, Lifestyle Stress, and Neurodegeneration. Immunity 52, 222-240.
    Mahley, R.W., 2016. Apolipoprotein E: from cardiovascular disease to neurodegenerative disorders. J Mol Med (Berl) 94, 739-746.
    Mahley, R.W., Huang, Y., 2012. Apolipoprotein e sets the stage: response to injury triggers neuropathology. Neuron 76, 871-885.
    Marafie, S.K., Al-Shawaf, E.M., Abubaker, J., Arefanian, H., 2019. Palmitic acid-induced lipotoxicity promotes a novel interplay between Akt-mTOR, IRS-1, and FFAR1 signaling in pancreatic beta-cells. Biol Res 52, 44.
    Martin, G.M., Kandasamy, B., DiMaio, F., Yoshioka, C., Shyng, S.L., 2017. Anti-diabetic drug binding site in a mammalian KATP channel revealed by Cryo-EM. Elife 6.
    Martinez de Morentin, P.B., Varela, L., Ferno, J., Nogueiras, R., Dieguez, C., Lopez, M., 2010. Hypothalamic lipotoxicity and the metabolic syndrome. Biochim Biophys Acta 1801, 350-361.
    McLarnon, J.G., Franciosi, S., Wang, X., Bae, J.H., Choi, H.B., Kim, S.U., 2001. Acute actions of tumor necrosis factor-alpha on intracellular Ca(2+) and K(+) currents in human microglia. Neuroscience 104, 1175-1184.
    Miedel, C.J., Patton, J.M., Miedel, A.N., Miedel, E.S., Levenson, J.M., 2017. Assessment of Spontaneous Alternation, Novel Object Recognition and Limb Clasping in Transgenic Mouse Models of Amyloid-beta and Tau Neuropathology. J Vis Exp.
    Moodley, K.K., Chan, D., 2014. The hippocampus in neurodegenerative disease. Front Neurol Neurosci 34, 95-108.
    Mori, T., Kobayashi, M., Town, T., Fujita, S.C., Asano, T., 2003. Increased vulnerability to focal ischemic brain injury in human apolipoprotein E4 knock-in mice. J Neuropathol Exp Neurol 62, 280-291.
    Munoz-Planillo, R., Kuffa, P., Martinez-Colon, G., Smith, B.L., Rajendiran, T.M., Nunez, G., 2013. K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38, 1142-1153.
    Nelson, A.J.D., Kinnavane, L., Amin, E., O'Mara, S.M., Aggleton, J.P., 2020. Deconstructing the Direct Reciprocal Hippocampal-Anterior Thalamic Pathways for Spatial Learning. J Neurosci 40, 6978-6990.
    Nguyen, T.B., Olzmann, J.A., 2017. Lipid droplets and lipotoxicity during autophagy. Autophagy 13, 2002-2003.
    Nomura, J., So, A., Tamura, M., Busso, N., 2015. Intracellular ATP Decrease Mediates NLRP3 Inflammasome Activation upon Nigericin and Crystal Stimulation. J Immunol 195, 5718-5724.
    Olivecrona, G., 2016. Role of lipoprotein lipase in lipid metabolism. Curr Opin Lipidol 27, 233-241.
    Ortega, F.J., Gimeno-Bayon, J., Espinosa-Parrilla, J.F., Carrasco, J.L., Batlle, M., Pugliese, M., Mahy, N., Rodriguez, M.J., 2012. ATP-dependent potassium channel blockade strengthens microglial neuroprotection after hypoxia-ischemia in rats. Exp Neurol 235, 282-296.
    Picard, A., Rouch, C., Kassis, N., Moulle, V.S., Croizier, S., Denis, R.G., Castel, J., Coant, N., Davis, K., Clegg, D.J., Benoit, S.C., Prevot, V., Bouret, S., Luquet, S., Le Stunff, H., Cruciani-Guglielmacci, C., Magnan, C., 2014. Hippocampal lipoprotein lipase regulates energy balance in rodents. Mol Metab 3, 167-176.
    Praagman, J., de Jonge, E.A., Kiefte-de Jong, J.C., Beulens, J.W., Sluijs, I., Schoufour, J.D., Hofman, A., van der Schouw, Y.T., Franco, O.H., 2016. Dietary Saturated Fatty Acids and Coronary Heart Disease Risk in a Dutch Middle-Aged and Elderly Population. Arterioscler Thromb Vasc Biol 36, 2011-2018.
    Rajmohan, V., Mohandas, E., 2007. The limbic system. Indian J Psychiatry 49, 132-139.
    Ramonet, D., Rodriguez, M.J., Fredriksson, K., Bernal, F., Mahy, N., 2004a. In vivo neuroprotective adaptation of the glutamate/glutamine cycle to neuronal death. Hippocampus 14, 586-594.
    Ramonet, D., Rodriguez, M.J., Pugliese, M., Mahy, N., 2004b. Putative glucosensing property in rat and human activated microglia. Neurobiol Dis 17, 1-9.
    Reess, T.J., Rus, O.G., Gursel, D.A., Schmitz-Koep, B., Wagner, G., Berberich, G., Koch, K., 2018. Association between hippocampus volume and symptom profiles in obsessive-compulsive disorder. Neuroimage Clin 17, 474-480.
    Rolls, E.T., Cahusac, P.M., Feigenbaum, J.D., Miyashita, Y., 1993. Responses of single neurons in the hippocampus of the macaque related to recognition memory. Exp Brain Res 93, 299-306.
    Rosen, E.D., Spiegelman, B.M., 2006. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444, 847-853.
    Ruan, J.-S., Lin, J.-K., Kuo, Y.-Y., Chen, Y.-W., Chen, P.-C., 2018a. Chronic palmitic acid-induced lipotoxicity correlates with defective trafficking of ATP sensitive potassium channels in pancreatic β cells. The Journal of nutritional biochemistry 59, 37-48.
    Ruan, J.S., Lin, J.K., Kuo, Y.Y., Chen, Y.W., Chen, P.C., 2018b. Chronic palmitic acid-induced lipotoxicity correlates with defective trafficking of ATP sensitive potassium channels in pancreatic beta cells. J Nutr Biochem 59, 37-48.
    Rubin, R.D., Watson, P.D., Duff, M.C., Cohen, N.J., 2014. The role of the hippocampus in flexible cognition and social behavior. Front Hum Neurosci 8, 742.
    Sadur, C.N., Eckel, R.H., 1982. Insulin stimulation of adipose tissue lipoprotein lipase. Use of the euglycemic clamp technique. J Clin Invest 69, 1119-1125.
    Savary, S., Trompier, D., Andreoletti, P., Le Borgne, F., Demarquoy, J., Lizard, G., 2012. Fatty acids - induced lipotoxicity and inflammation. Curr Drug Metab 13, 1358-1370.
    Schaffer, J.E., 2016. Lipotoxicity: Many Roads to Cell Dysfunction and Cell Death: Introduction to a Thematic Review Series. J Lipid Res 57, 1327-1328.
    Schommer, J., Marwarha, G., Nagamoto-Combs, K., Ghribi, O., 2018. Palmitic Acid-Enriched Diet Increases alpha-Synuclein and Tyrosine Hydroxylase Expression Levels in the Mouse Brain. Front Neurosci 12, 552.
    Schrauwen, P., Schrauwen-Hinderling, V., Hoeks, J., Hesselink, M.K., 2010. Mitochondrial dysfunction and lipotoxicity. Biochim Biophys Acta 1801, 266-271.
    Schwartz, R.S., Brunzell, J.D., 1981. Increase of adipose tissue lipoprotein lipase activity with weight loss. J Clin Invest 67, 1425-1430.
    Simard, J.M., Woo, S.K., Schwartzbauer, G.T., Gerzanich, V., 2012. Sulfonylurea receptor 1 in central nervous system injury: a focused review. J Cereb Blood Flow Metab 32, 1699-1717.
    Smith, J.A., Das, A., Ray, S.K., Banik, N.L., 2012. Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull 87, 10-20.
    Soundarapandian, M.M., Zhong, X., Peng, L., Wu, D., Lu, Y., 2007. Role of K(ATP) channels in protection against neuronal excitatory insults. J Neurochem 103, 1721-1729.
    Sun, H.S., Feng, Z.P., 2013. Neuroprotective role of ATP-sensitive potassium channels in cerebral ischemia. Acta Pharmacol Sin 34, 24-32.
    Suzuki, M., Sasaki, N., Miki, T., Sakamoto, N., Ohmoto-Sekine, Y., Tamagawa, M., Seino, S., Marban, E., Nakaya, H., 2002. Role of sarcolemmal K(ATP) channels in cardioprotection against ischemia/reperfusion injury in mice. J Clin Invest 109, 509-516.
    Sweatt, J.D., 2004. Hippocampal function in cognition. Psychopharmacology (Berl) 174, 99-110.
    Szoke, E., Gerich, J.E., 2005. Role of impaired insulin secretion and insulin resistance in the pathogenesis of type 2 diabetes mellitus. Compr Ther 31, 106-112.
    Takeda, M., Martinez, R., Kudo, T., Tanaka, T., Okochi, M., Tagami, S., Morihara, T., Hashimoto, R., Cacabelos, R., 2010. Apolipoprotein E and central nervous system disorders: reviews of clinical findings. Psychiatry Clin Neurosci 64, 592-607.
    Tracey, T.J., Steyn, F.J., Wolvetang, E.J., Ngo, S.T., 2018a. Neuronal Lipid Metabolism: Multiple Pathways Driving Functional Outcomes in Health and Disease. Frontiers in Molecular Neuroscience 11.
    Tracey, T.J., Steyn, F.J., Wolvetang, E.J., Ngo, S.T., 2018b. Neuronal Lipid Metabolism: Multiple Pathways Driving Functional Outcomes in Health and Disease. Front Mol Neurosci 11, 10.
    Wang, H., Eckel, R.H., 2009. Lipoprotein lipase: from gene to obesity. Am J Physiol Endocrinol Metab 297, E271-288.
    Wang, H., Eckel, R.H., 2012. Lipoprotein lipase in the brain and nervous system. Annu Rev Nutr 32, 147-160.
    Wible, C.G., 2013. Hippocampal physiology, structure and function and the neuroscience of schizophrenia: a unified account of declarative memory deficits, working memory deficits and schizophrenic symptoms. Behav Sci (Basel) 3, 298-315.
    Xian, X., Liu, T., Yu, J., Wang, Y., Miao, Y., Zhang, J., Yu, Y., Ross, C., Karasinska, J.M., Hayden, M.R., Liu, G., Chui, D., 2009. Presynaptic defects underlying impaired learning and memory function in lipoprotein lipase-deficient mice. J Neurosci 29, 4681-4685.
    Xu, Q., Bernardo, A., Walker, D., Kanegawa, T., Mahley, R.W., Huang, Y., 2006. Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. J Neurosci 26, 4985-4994.
    Yamada, K., Ji, J.J., Yuan, H., Miki, T., Sato, S., Horimoto, N., Shimizu, T., Seino, S., Inagaki, N., 2001. Protective role of ATP-sensitive potassium channels in hypoxia-induced generalized seizure. Science 292, 1543-1546.
    Yokoshiki, H., Sunagawa, M., Seki, T., Sperelakis, N., 1998. ATP-sensitive K+ channels in pancreatic, cardiac, and vascular smooth muscle cells. Am J Physiol 274, C25-37.

    無法下載圖示 校內:不公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE