簡易檢索 / 詳目顯示

研究生: 林詩芸
Lin, Shi-Yun
論文名稱: 含芘基超分子凝膠的自組裝與螢光特性探討
Self-Assembly and Fluorescence of Supramolecular Gelators Derived from Pyrene
指導教授: 劉瑞祥
Liu, Jui-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 88
中文關鍵詞: 自組裝小分子凝膠氫鍵芘基螢光螺旋受激發分子
外文關鍵詞: self-assembly, LMWGs, hydrogen bond, pyrene, fluorescence, helical structure, excimer
相關次數: 點閱:90下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 小分子凝膠的形成,來自於分子間的自組裝機制,為了解分子結構對凝膠的生成和自組裝的影響,本研究設計兩組具螢光性質的化合物PA和DPA,分別為單邊含芘基的不對稱型分子,以及雙邊含芘基的對稱型分子。藉由改變結構中碳氫鏈基團的長度,探討碳鏈長度對凝膠化能力的影響。並藉由導入的芘螢光基團,探討在不同溫度下,凝膠態和溶液態對螢光強度和發光波長的影響,進一步透過螢光變化的趨勢,了解分子自組裝的堆疊結構。研究結果顯示,較長的碳氫鏈有利於分子在有機溶劑環境下形成凝膠態,且有助於提高凝膠的溶解溫度;結構對稱的分子DPA,除了分子間的作用力外,可透過分子摺疊的方式形成分子內的作用力,有助於提高凝膠的耐熱性,但於多數溶劑中不易形成凝膠。以TEM、SEM和變溫1H-NMR分析,分子間氫鍵作用力、π-π堆疊和凡德瓦爾力確實參與自組裝的過程,透過分子的堆疊排列,進一步形成三維網狀結構的超分子凝膠。利用螢光光譜在凝膠相轉換前、後隨溫度的變化,配合XRD測得的分子排列間距,我們針對兩種分子構型模擬出,在凝膠態時,PA17和DPA10分別是以螺旋和bi-layer的方式堆疊。

    By controlling the length of alkyl chain, we have successfully synthesized a series of fluorescent low-molecular-weight gelators (LMWGs) of N-(pyrene-1-yl)alkyleneamide (PA) and N-(pyrene-1-yl)- N-(pyren-3-yl)alkylenedipamide (DPA) based on pyrene groups and amide moieties. Dependence of gelation properties on molecular chain length was studied. In addition, effect of pyrene group on fluorescence at different temperature under both liquid and gel states were investigated. The results show that the symmetric DPA reveals higher thermo stability but weaker gelation behavior as compared with asymmetric PA. From the results of SEM and TEM analysis, self-assembly of LMWGs forms nan-fiber and then 3D network constructions. Interestingly, both left-handed and right handed helical structures were observed under TEM. Theoretically, both racemic structures should be induced under achiral environment. From the results of temperature dependent 1H-NMR, a reasonable molecular arrangement of the self-assembled constructions via secondary forces were proposed. Furthermore, from the results of fluorescence spectra, the pyrene group of PA17 was found to change from monomer to excimer before and after gelation under UV-exposure. Oppositely, for symmetric compound DPA10, the pyrene group shows excimer behavior either in gel state or solution state. From the results of XRD and molecular simulation, both reasonable helical structure and bi-layer self-assembled model for PA17 and DPA10 were proposed.

    摘要 I Abstract II 致謝 III 目錄 IV 示意圖 VII 圖目錄 X 表目錄 XIV 第一章 緒論 1 1-1 前言 1 1-2 研究動機與方向 2 第二章 文獻回顧 4 2-1 超分子化學 4 2-2 自組裝超分子 5 2-3 凝膠簡介 7 2-4 超分子凝膠 10 2-4-1 The simplest structure: n-Alkanes Derivatives Gelator 12 2-4-2 Amide or Urea Derivatives Gelator 13 2-4-3 The Beginning-Steroid Derivatives Gelators 15 2-4-3-1 ALS structure 16 2-4-3-2 A(LS)2 structure 21 2-4-4 雙成分系統凝膠 25 2-4-4-1 Donor-acceptor interaction 25 2-4-4-2 Hydrogen bonding interaction 26 2-4-5 超分子凝膠的應用 27 2-4-5-1 光電刺激調控 27 2-4-5-2 金屬離子感測 29 2-4-5-3 奈米結構模版 30 第三章 實驗部分 32 3-1 實驗藥品 32 3-2 實驗儀器 33 3-3 實驗步驟 35 3-3-1 合成單邊含螢光集團pyrene的醯胺基碳鏈小分子 35 3-3-2 合成雙邊含螢光集團pyrene的醯胺基碳鏈小分子 36 3-4 不同溶劑下自組裝形成凝膠能力之測試 37 3-5 TEM與SEM試片製作 38 3-5-1 TEM試片製作 38 3-5-2 SEM試片製作 38 3-6 變溫1H-NMR樣品製作 38 3-7 變溫PHOTOLUMINESCENCE(PL)樣品製作 39 第四章 結果與討論 40 4-1 含pyridine基團的小分子凝膠(LMWGS)之鑑定 40 4-1-1 單邊pyrene的醯胺基碳鏈分子之合成 40 4-1-2 雙邊pyrene的醯胺基碳鏈分子之合成 43 4-2 含pyrene基團的分子凝膠能力探討 45 4-3 含pyrene基團的分子凝膠微結構探討 52 4-4 含pyrene基團分子凝膠於變溫H1-NMR光譜探討 59 4-5 含pyrene基團分子凝膠於變溫螢光光譜探討 65 4-6 含pyrene基團分子凝膠的自組裝模式探討 71 第五章 結論 83 參考文獻 84

    [1] J. M. Lehn, Supramolecular Chemistry-Scope and Perspectives Molecules-Supermolecules-Molecular Devices, Nobel Lecture, 27, 89 (1987).
    [2] 楊吉水, 超分子化學, Chemistry, The Chinese Chemistry Society, Taipei, 62, 11 (2004).
    [3] 陳玟婷,光學活性有機凝膠體之超分子自組裝與特性探討,國立成功大學化學工程研究所碩士論文 (2011)。
    [4] G. M. Whitesides, Beyond Molecules: Self-assembly of Mesoscopic and Macroscopic Components, Proc. Natl. Acad. Sci., 99, 4769 (2002).
    [5] G. M. Whitesides, and B. Grzybowski, Self-Assembly at All Scales, Science, 295, 2418 (2002).
    [6] 吳佳璇,超分子結構奈米銀膠體的製備與特性探討,國立成功大學化學工程研究所碩士論文 (2012)。
    [7] K. E. Schwiebert, J. C. MacDonald, and G. M. Whitesides, Engineering the Solid State with 2-Benzimidazolones, J. Am. Chem. Soc., 118, 4018 (1996).
    [8] L. S. Mende, R. H. Friend, and J. D. MacKenzie, Self-Organized Discotic Liquid Crystals for High-Efficiency Organic Photovoltaics, Science, 293, 1119 (2001).
    [9] E. L. Thomas, The ABCs of Self-Assembly, Science, 286, 1307 (1999).
    [10] S. Forster, From Self-Organizing Polymers to Nanohybrid and Biomaterials, Angew. Chem., Int. Ed., 41, 688 (2002).
    [11] D. Chapman, Micelles, Monolayers and Biomembranes, Wiley Liss, New York, p479 (1995).
    [12] G. M. Whitesides, Patterned Self-Assembled Monolayers and Meso-Scale Phenomena, Acc. Chem. Res., 28, 219 (1995).
    [13] V. Grantcharova, D. Baker, and A. L. Horwich, Mechanisms of Protein Folding, Curr. Opin. Struct. Biol., 11, 70 (2001).
    [14] H. Nabika, B. Takimoto, and K. Murakoshi, Molecular Separation in The Lipid Bilayer Medium: Electrophoretic and Self-spreading Approaches, Anal. Bioanal. Chem., 391, 2497 (2008).
    [15] N. M. Sangeetha, and U. Maitra, Supramolecular Gels: Functions and Uses, Chem. Soc. Rev., 34, 821 (2005).
    [16] A. Mahavidyalaya, Sainthia, and Birbhum, Low Molecular Mass Gelators of Organic Liquids, J. Phys. Sci., 11, 156 (2007).
    [17] 李俊賢,含N, N'-二苯吡啶醯胺凝膠分子其自組裝行為硏究,國立臺灣師範大學化學研究所碩士論文 (2009)。
    [18] 呂政錡,含Urea基團Triazine與Triarylamine衍生物之新型凝膠分子於不同溶劑下凝集效應與光學性質影響之探討,國立臺灣科技大學高分子工程研究所博士論文 (2008)。
    [19] David J. Abdallah and Richard G. Weiss, n-Alkanes Gel n-Alkanes (and Many Other Organic Liquids), Langmuir, 16, 352 (2000).
    [20] M. George, G. Tan, Vijay T. John, and Richard G. Weiss, Urea and Thiourea Derivatives as Low Molecular-Mass Organogelators, Chem. Eur. J., 11, 3243 (2005).
    [21] David J. Abdallah and Richard G. Weiss, Organogels and Low Molecular Mass
    Organic Gelators, Adv. Mater., 12 (2000).
    [22] M. Zinic, F. Vogtle, and F. Fages, Cholesterol-Based Gelators, Top. Curr. Chem., 256, 39 (2005).
    [23] Lin Y, Kachar B, and Weiss RG, Novel Family of Gelators of Organic Fluids and the Structure of Their Gels , J Am Chem Soc, 111, 5542 (1989).
    [24] Y. P. Wu, S. Wu, X. J. Tian, X. Wang, W. X. Wu, G. Zou, and Q. J. Zhang, Photoinduced Reversible Gel–sol Transitions of Dicholesterol-linked Azobenzene Derivatives through Breaking and Reforming of Van Der Waals Interactions, Soft Matter, 7, 167 (2011).
    [25] J. H. Jung, S. Shinkai, and T. Shimizu, Nanometer-Level Sol - Gel Transcription of Cholesterol Assemblies into Monodisperse Inner Helical Hollows of the Silica, Chem. Mater., 15, 2141 (2003).
    [26] P. Xue, R. Lu, D. Li, M. Jin, C. Tan, C. Bao, Z. Wang, and Y. Zhao, Novel CuS Nanofibers Using Organogel as a Template: Controlled by Binding Sites, Langmuir, 20, 11234 (2004).
    [27] J. M. Lehn, M. Mascal, and J. Fischer, Molecular Recognition directed Self-assembly of Ordered Supramolecular Strands by Cocrystallization of Complementary Molecular Components, Chem. Commun., 479 (1990).
    [28] C. Wang, Q. Chen, F. Sun, D. Zhang, G. Zhang, and D. Zhu, Multistimuli Responsive Organogels Based on a New Gelator Featuring Tetrathiafulvalene and Azobenzene Groups: Reversible Tuning of the Gel-Sol Transition by Redox Reactions and Light Irradiation, J. Am Chem. Soc., 132, 3092,( 2010).
    [29] Q. T. Liu, Y. L. Wang, W. Li, and Wu, LX, Structural Characterization and Chemical Response of a Ag-Coordinated Supramolecular Gel, Langmuir, 23, 8217 (2007).
    [30] B. Valeur, and Mario N. Berberan-Santos, Molecular Fluorescence: Principles and Application 2nd edition, WILEY-VCH, (2002).

    下載圖示 校內:2014-01-18公開
    校外:2014-01-18公開
    QR CODE