| 研究生: |
王鳴宇 Wang, Ming-Yu |
|---|---|
| 論文名稱: |
正銅電極應用於矽基太陽能電池之研究 Study on Front Copper Electrode for Si-based Solar Cell Application |
| 指導教授: |
李文熙
Lee, Wen-Hsi |
| 共同指導教授: |
梁從主
Liang, Tsorng-Ju |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系碩士在職專班 Department of Electrical Engineering (on the job class) |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 太陽能電池 、銀包銅膏 、網版印刷 、歐姆接觸 、低溫燒結 |
| 外文關鍵詞: | solar cell, silver coated copper, screen printing, ohmic contact, low temperature sintering |
| 相關次數: | 點閱:94 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究使用新型的銀包銅漿料及二階段燒結技術來完成太陽能電池正面電極製作,此優點為低成本、低接觸電阻、環保,可取代傳統正銀電極,並避免使用含鉛的玻璃,以開發出環保及低成本高導電率之正電極材料。
本研究使用抗反射膜(Anti Reflection Coating, ARC)沉積及背鋁印製之單晶矽太陽能電池基材,將自製的銀包銅粉體配製出高固含量的導電膏,再利用綠光雷射(Green Laser)開孔抗反射層形成H圖案的矽基材進行網版印刷。在第一階段低溫燒結過程中,經由熱處理形成歐姆接觸,再利用快速熱退火系統(Rapid Thermal Annealing,RTA)完成燒結。以燒結使表面之奈米銀做為金屬銅粉接觸的黏著劑,而銅被包覆率大於90%在燒結中能避免銅氧化得太嚴重,並可提升元件導電率。各製程結束後分別透過透射電子顯微鏡、場放射型掃描式電子顯微鏡、傳輸線模型(Transmission Line Model,TLM) 及太陽光能量效率量測系統來分析材料微結構、特徵接觸電阻及轉換效率。
本研究探討新型漿料及燒結製程可同時達成正面電極所需之歐姆接觸與較低之特徵接觸電阻,量測結果其特徵接觸電阻為0.006Ωcm2,應用於太陽能電池轉換效率為5.6%,仍低於目前業界普遍所用的正銀電極材料。本研究之低成本新型銀包銅漿料搭配二階段燒結技術,成功開發出環保、低成本、低特徵接觸電阻之矽基太陽能電池正面電極。
Abstract
The aim of this study is to construct ohmic contact between the front electrode and Si-based solar cell by newly-invented low-cost paste and 2-step sintering process. Therefore, the purpose of this thesis is to develop low-cost and low contact resistance solar cells with silver coated copper front electrodes as alternatives for ones with a traditional silver front electrode, which is limited by its high cost and Pb inside the paste.
This study uses already completed an antireflection coating deposition of back Al electrode of the monocrystalline silicon solar cell. The self-made CucoreAgshell powder is used to fabricate the high solid content paste, which is screen-printed on the solar cell passivation layer opened by green laser ablation. The 2-step sintering process is utilized in this study. During the low-temperature curing process, an ohmic contact is formed between the front electrode and the Si-based substrate. In the rapid thermal annealing process, owing to its sintering mechanism, silver nanoparticles as the adhesive between the copper powder. The covering rate of silver is more than 90% that can avoid the oxidation of copper powder in the low-temperature curing and enhance the conductivity of the device. Four-point probe, TLM, and SEM analysis are used to investigate the effect of different parameters of annealing on the device performance.
From the experiment and analysis results, the metallization of solar cells by using innovative screen-printing paste have low specific contact resistance after the sintering process. Among all cells, the lowest specific contact resistivity is 0.006Ωcm2 and the efficiency is about 5.6%, lower than the current technology. In short, low-cost and low specific contact resistance solar cells with screen-printed CucoreAgshell front electrodes are successfully developed.
1. J. Szlufcik, Sivoththaman, S., Nlis, J. F., Mertens, R. P., and Van-Overstraeten, R., “Low-cost industrial technologies of crystalline silicon solar cells”,1997.
2. Becquerel, Memoire Sur Les Effects D´Electriques Produits Sous L´Influence Des Rayons Solaires. Annalen der Physick und Chemie, 1839. ;9:145-149.
3. J. Zhao, Wang, A., Yun, F., Zhang, G., Roche, D. M., Wenham, S. R., and Green, M. A., “20,000 PERL silicon cells for the "1996 World Solar Challenge" solar car race”, 1997.
4. R. A. Sinton and Cuevas, A., “Contactless determination of current–voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data”, Applied Physics Letters, vol. 69, pp. 2510-2512, 1996.
5. G. L. Pearson, “Conversion of Solar to Electrical Energy”, American Journal of Physics, vol. 25, no. 9, p. 591, 1957.
6. C. Honsberg and S. Bowden, Pv Education [Online] Available www.Pveducation.Org. 2014.
7. C. Gümüş, Ulutaş, C., and Ufuktepe, Y., “Optical and structural properties of manganese sulfide thin films”, Optical Materials, vol. 29, no. 9, pp. 1183 - 1187, 2007.
8. J. Zhao, Wang, A., and Green, M. A., “19.8% Efficient Multicrystalline Silicon Solar Cells with Honeycomb Textured Front Surface”, 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion. Vienna, Austria, 1998.
9. E. Y. Wang, Yu, F. T. S., Sims, V. L., Brandhorst, E. W., and Broder, J. D., “Optimum Design of Anti-reflection coating for silicon solar cells”,10th IEEE Photovoltaic Specialists Conference. pp. 168-171, 1973.
10. K. R. McIntosh and Baker-Finch, S. C., “OPAL 2: Rapid optical simulation of silicon solar cells”, in 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC), Austin, TX, USA, 2012.
11. K. Misiakos and Tsamakis, D., “Accurate measurements of the silicon intrinsic carrier density from 78 to 340 K”, Journal of Applied Physics, vol. 74, no. 5, p. 3293, 1993.
12. A. Mette and et al, “Series resistance characterization of industrial silicon solar cells with screen-printed contacts using hotmelt paste”, Progress in Photovoltaics: Research and Applications, vol. 15, pp. 493-505, 2007.
13. J. - W. Park, Baeg, K. - J., Ghim, J., Kang, S. - J., Park, J. - H., and Kim, D. - Y., “Effects of Copper Oxide/Gold Electrode as the Source-Drain Electrodes in Organic Thin-Film Transistors”, Electrochemical and Solid-State Letters, vol. 10, no. 11, p. H340, 2007.
14. C. B. Honsberg, Anwar, K. K., Mehrvarz, H. R., Cotter, J. E., and Wenham, S. R., “Dependence of aluminium alloying on solar cell processing conditions”, 13th Workshop on Crystalline Silicon Solar Cell Materials and Processes. 2003.
15. S. Glunz. Photonics for High-Efficiency Crystalline Silicon Solar Cells. in EU-PVSEC. 2013.
16. S. M. Hu, Fahey, P., and Sutton, P., “On Phosphorus Diffusion in Silicon”, On Phosphorus Diffusion in Silicon, vol. 54, pp. 6912-6922, 1983.
17. J. Zhao, Wang, A., Green, M. A., and Ferrazza, F., “19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells”, Applied Physics Letters, vol. 73, pp. 1991-1993, 1998.
18. G. Masetti, Severi, M., and Solmi, S., “Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon”, IEEE Transactions on Electron Devices, vol. ED-30, pp. 764–9, 1983.
19. E. Y. Wang, Yu, F. T. S., Sims, V. L., Brandhorst, E. W., and Broder, J. D., “Optimum Design of Anti-reflection coating for silicon solar cells”,10th IEEE Photovoltaic Specialists Conference. pp. 168-171, 1973.
20. Bentzen, A., Phosphorus diffusion and gettering in silicon solar cells Dissertation, University of Oslo, 2006.
21. R. B. Kale and Lokhande, C. D., “Influence of air annealing on the structural, optical and electrical properties of chemically deposited CdSe nano-crystallites”, Applied Surface Science, vol. 223, no. 4, pp. 343 - 351, 2004.
22. Bauer G. Absolutwerte der optischen Absorptionskonstanten von Alkalihalogenidkristallen im Gebiet ihrer ultravioletten Eigenfrequenzen. Annalen der Physik. 1934 ;411(4):434 - 464.
23. S.W. Glunz, J. Dicker, M. Esterie, M. Hermie, J. Iserberg, F. Kamerewerd, J. Knobloch, D. Kray, A. Leimenstoll, F. Lutz, D. O wald, R. Preu, S. Rein, E. Schäffer, C. Schetter, H. Schmidhuber, H. Schmidt, M. Steuder, C. Vorgrimler, G. Willeke, High-efficiency silicon solar cells for low-illumination applications, Proceedings of the Photovoltaic Specialists Conference, New Orleans,450-453, 2002.
24. B. v. Roedern and G. H. Bauer, Why Is the Open-Circuit Voltageof Crystalline Si Solar Cells So Critically Dependent on Emitter- and Base-Doping. 1999.
25. A. W. Blakers, Shading Losses of Solar-Cell Metal Grids. American Institute of physics, 1992.
26. Tajima, M., Ikebe, M., Ohshita, Y., Ogura, A., Photoluminescence analysis of iron contamination effect in multicrystalline silicon wafers for solar cells, Journal of Electronic Materials 39 (6), 747-750, 2010.
27. S. Bowden and Rohatgi, A., “Rapid and Accurate Determination of Series Resistance and Fill Factor Losses in Industrial Silicon Solar Cells”, in 17th European Photovoltaic Solar Energy Conference, Munich, Germany, 2001.
28. Ballif, C., Huljic, D. M., Willeke, G., Hessler-Wyser, A., Silver thick-film contacts on highly doped n-type silicon emitters: structural and electronic properties of the interface, Applied Physics Letters 82 (12),1878-1880, 2003.
29. T. Takamoto, Agui, T., Yoshida, A., Nakaido, K., Juso, H., Sasaki, K., Nakamura, K., Yamaguchi, H., Kodama, T., Washio, H., Imazumi, M., andTakahashi, M., “World’s Highest Efficiency Triple-junction Solar Cells Fabricated by Inverted Layers Transfer Process”, 35 IEEE Photovoltaic Specialist Conference. Honolulu HI, USA, 2010.
30. M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients”, Solar Energy Materials and Solar Cells, vol. 92, pp. 1305–1310, 2008.
31. J. - W. Park, Baeg, K. - J., Ghim, J., Kang, S. - J., Park, J. - H., and Kim, D. - Y., “Effects of Copper Oxide/Gold Electrode as the Source-Drain Electrodes in Organic Thin-Film Transistors”, Electrochemical and Solid-State Letters, vol. 10, no. 11, p. H340, 2007.
32. S. Anandan, Wen, X., and Yang, S., “Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells”, Materials Chemistry and Physics, vol. 93, no. 1, pp. 35 - 40, 2005.
33. R. A. Sinton and Cuevas, A., “Contactless determination of current–voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data”, Applied Physics Letters, vol. 69, pp. 2510-2512, 1996.
34. M. Alemán, N. B. D. Rudolph, T. Rublack, and S. W. Glunz, Front-Side Metallization Beyond Silver Paste: Silicide Formation / Alternative Technologies. 2008.
35. A. Goetzberger and Hoffmann, V. U., “Photovoltaic Solar Energy Generation”, p. 232, 2005.
36. Min Wu,Baoping Li,Yi Cao,Jiangang Song,Ying Sun,Hong Yang,Xueqin Zhang Received: 18 June 2013 / Accepted: 7 September 2013 / Published online: 20 September 2013 Springer Science Business Media New York 2013.
37. M. Galiazzo et al. 'New Technologies for Improvement of Metallization Line', 24th EUPVSEC, Hamburg 2009.
38. D.Buzby and A. Dobie, "Fine Line Screen Printing of Thick Film Pastes on Silicon Solar Cells" 41st International Symposium of Microelectronics, IMAPS.
39. T.Falcon 3rd metallization workshop, 2011 Double printing.
40. X. Gao et al., "One-Step Screen-Printing Metallization Forming High Aspect Ratio Grid Lines on Crystalline Solar Cells" 25th EUPVSEC (2010) Valencia.
41. G. Schubert, F. Huster, P. Fath, Physical understanding of printed thick-film front contacts of crystalline Si solar cells—Review of existing models and recent developments, Sol. Energy Mater. Sol. Cells 90 (2006) 3399-3406.
42. J. Zhao, A. Wang, and M. A. Green, Sol. Energy Mater. And Sol. Cells. 2001.
43. L. Frisson, M. Honore, R.-Mertens,R. Govaerts, and~R. Van Overstraeten,.“Siliconnsolar cells. wifh scceen printed diffusion andmetallization,” in Proc. 14th IEEE Photovoltaic Specialists Conf., 1980, pp. 941-942.
44. van der Heide ASH, et al. Mapping of contact resistance and locating shunts on solar cells using Resistance Analysis by Mapping of Potential (RAMP) techniques. 16th European Photovoltaic Solar Energy Conference. 2000 :1438.
45. D. Pysch, A. Mette, A. Filipovic, S.W. Glunz, Comprehensive analysis of advanced solar cell contacts consisting of printed fine-line seed layers thickened by silver plating, Progress in Photovoltaics: Research and Applications 17 (2009) 101–114.
46. Z.G. Li, L. Liang, A.S. Lonkin, B.M. Fish, M.E. Lewittes, L.K. Cheng, K.R. Mikeska, Microstructural comparison of silicon solar cells‘ front-side Ag contact and the evolution of current conduction mechanisms, J. Applied Phys. 110 (2011) 074304.
47. L.K. Cheng, L. Liang, Z.G. Li, Nano-Ag colloids assisted tunneling mechanism for current conduction in front contact of crystalline Si solar cells, Photovoltaic Specialists Conference 34 (2009) 002344-002348.
48. Zangwill, Andrew. Physics at Surfaces. Cambridge University Press. ISBN 978-0-521-34752-5. Approaches contact from point of view of surface states and reconstruction. 1988.
49. A. Mette and et al, “Series resistance characterization of industrial silicon solar cells with screen-printed contacts using hotmelt paste”, Progress in Photovoltaics: Research and Applications, vol. 15, pp. 493-505, 2007.
50. D. Jordan and Nagle, J. P., “Buried contact concentrator solar cells”, Progress in Photovoltaics: Research and Applications, vol. 2, pp. 171-176, 1994.
51. A. B. Serreze HB. Optimizing Solar Cell Performance by Simultaneous Consideration of Grid Pattern Design and Interconnect Configurations. 13th IEEE Photovoltaic Specialists Conference. 1978 :1-8.
52. T. Fuyuki, Kondo, H., Yamazaki, T., Takahashi, Y., and Uraoka, Y., “Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence”, Applied Physics Letters, vol. 86, p. 262108, 2005.
53. M. Alemán, A. Streek, P. Regenfu , A. Mette, R. Ebert, H. Exner, S. W. Glunz, G. Willeke, Laser micro-sintering as a new metallization technique for silicon solar cells, Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden, Germany, 2006.
54. W. Neu, A. Kress, W. Jooss, P. Fath, E. Bucher, Low-cross multicrystalline back-contact silicon solar cells with screen printed metallization, Solar Energy Materials and Solar Cells 74/1-4 (2002) 139-146.
校內:2021-08-23公開