簡易檢索 / 詳目顯示

研究生: 王鳴宇
Wang, Ming-Yu
論文名稱: 正銅電極應用於矽基太陽能電池之研究
Study on Front Copper Electrode for Si-based Solar Cell Application
指導教授: 李文熙
Lee, Wen-Hsi
共同指導教授: 梁從主
Liang, Tsorng-Ju
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系碩士在職專班
Department of Electrical Engineering (on the job class)
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 62
中文關鍵詞: 太陽能電池銀包銅膏網版印刷歐姆接觸低溫燒結
外文關鍵詞: solar cell, silver coated copper, screen printing, ohmic contact, low temperature sintering
相關次數: 點閱:94下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本研究使用新型的銀包銅漿料及二階段燒結技術來完成太陽能電池正面電極製作,此優點為低成本、低接觸電阻、環保,可取代傳統正銀電極,並避免使用含鉛的玻璃,以開發出環保及低成本高導電率之正電極材料。
    本研究使用抗反射膜(Anti Reflection Coating, ARC)沉積及背鋁印製之單晶矽太陽能電池基材,將自製的銀包銅粉體配製出高固含量的導電膏,再利用綠光雷射(Green Laser)開孔抗反射層形成H圖案的矽基材進行網版印刷。在第一階段低溫燒結過程中,經由熱處理形成歐姆接觸,再利用快速熱退火系統(Rapid Thermal Annealing,RTA)完成燒結。以燒結使表面之奈米銀做為金屬銅粉接觸的黏著劑,而銅被包覆率大於90%在燒結中能避免銅氧化得太嚴重,並可提升元件導電率。各製程結束後分別透過透射電子顯微鏡、場放射型掃描式電子顯微鏡、傳輸線模型(Transmission Line Model,TLM) 及太陽光能量效率量測系統來分析材料微結構、特徵接觸電阻及轉換效率。
    本研究探討新型漿料及燒結製程可同時達成正面電極所需之歐姆接觸與較低之特徵接觸電阻,量測結果其特徵接觸電阻為0.006Ωcm2,應用於太陽能電池轉換效率為5.6%,仍低於目前業界普遍所用的正銀電極材料。本研究之低成本新型銀包銅漿料搭配二階段燒結技術,成功開發出環保、低成本、低特徵接觸電阻之矽基太陽能電池正面電極。

    Abstract
    The aim of this study is to construct ohmic contact between the front electrode and Si-based solar cell by newly-invented low-cost paste and 2-step sintering process. Therefore, the purpose of this thesis is to develop low-cost and low contact resistance solar cells with silver coated copper front electrodes as alternatives for ones with a traditional silver front electrode, which is limited by its high cost and Pb inside the paste.
    This study uses already completed an antireflection coating deposition of back Al electrode of the monocrystalline silicon solar cell. The self-made CucoreAgshell powder is used to fabricate the high solid content paste, which is screen-printed on the solar cell passivation layer opened by green laser ablation. The 2-step sintering process is utilized in this study. During the low-temperature curing process, an ohmic contact is formed between the front electrode and the Si-based substrate. In the rapid thermal annealing process, owing to its sintering mechanism, silver nanoparticles as the adhesive between the copper powder. The covering rate of silver is more than 90% that can avoid the oxidation of copper powder in the low-temperature curing and enhance the conductivity of the device. Four-point probe, TLM, and SEM analysis are used to investigate the effect of different parameters of annealing on the device performance.
    From the experiment and analysis results, the metallization of solar cells by using innovative screen-printing paste have low specific contact resistance after the sintering process. Among all cells, the lowest specific contact resistivity is 0.006Ωcm2 and the efficiency is about 5.6%, lower than the current technology. In short, low-cost and low specific contact resistance solar cells with screen-printed CucoreAgshell front electrodes are successfully developed.

    摘要 I Summary II Introduction III Materials and Methods IV Results and Discussion IV Conclusion IV 目錄 V 圖目錄 VII 表目錄 X 第1章緒論 1 1-1 前言 1 1-2 太陽能電池種類 1 1-3 研究動機 3 第2章文獻探討 5 2-1 矽晶太陽能電池發電原理 5 2-2 矽晶太陽能電池製程技術 6 2-2-1 太陽能電池損耗分析 11 2-3 傳統銀膏之燒結反應機制 14 第3章正銅電極實驗計畫 16 3-1 實驗正面電極燒穿基板之不同深度的影響 16 3-2 測試歐姆接觸與製成元件之實驗流程 18 3-2-1 傳輸線模型(Transmission Line Model, TLM)量測 21 3-2-2 快速熱退火(Rapid Thermal Annealing) 24 3-3 導電漿料製作與印刷實驗 25 3-4 導電線金屬化之燒結實驗 26 3-4-1 太陽能電池轉換效率量測 27 第4章網版印刷正銅電極實驗結果與討論 30 4-1 正面電極之網版印刷 30 4-1-1 導線網印品質 30 4-1-2 導線拉力測試 31 4-2 正面電極之歐姆接觸與效率量測結果 32 4-2-1 一階段低溫燒結 32 4-2-2 二階段燒結 37 第5章結論與未來展望 54 5-1 結論 54 5-2 未來展望 55 參考文獻 56 圖目錄 圖1 1 銀膏的組成物質樹狀圖 3 圖1 2 網版印刷與基板開孔的示意圖[5] 4 圖1 3雷射光化學加工的示意圖[6] 4 圖2 1 矽基太陽能電池發電原理示意圖 [10] 5 圖2 2 單晶矽(左) 、多晶矽(右)蝕刻後的表面微結構圖[15] 7 圖2 3 太陽能電池發射極之示意圖 7 圖2 4 正面電極電流轉換模型[20] 9 圖2 5 背鋁與矽基板接觸之微結構[21] 9 圖2 6 矽基太陽能電池製造流程圖[22] 10 圖2 7矽基太陽能電池基本構造[23] 10 圖2 8太陽能電池光損耗的來源[24] 11 圖2 9 太陽能電池的遮蔽損失示意圖[25] 12 圖2 10太陽能電池正面電極之串聯電阻示意圖[28] 12 圖2 11與矽基板介面的接觸電阻損失示意圖[30] 13 圖2 12 傳統太陽能電池燒結處理過程[33] 14 圖2 13 接觸電阻的發展過程[34] 15 圖3 1正面電極燒穿基板之不同深度的影響[35] 16 圖3 2 已完成前段製程之半成品矽晶太陽能電池 18 圖3 3 使用無抗反射層的TLM 圖形 18 圖3 4 已塗佈抗反射層的半成品矽晶片 19 圖3 5 雷射開孔抗反射層的矽晶片 19 圖3 6太陽能電池元件 20 圖3 7實驗流程 20 圖3 8 TLM圖形[44] 22 圖3 9 總電阻與兩個測量接頭之間的距離之關係圖[44] 22 圖3 10標準TLM測量之結構[46] 23 圖3 11燒結流程示意圖 27 圖3 12 太陽能電池的電壓-電流特性曲線[49] 28 圖3 13 太陽能電池對應Rs、Rsh的等效電路圖[53] 29 圖4 1連續高寬比電極線 30 圖4 2 第一階段250℃燒結後加上第二階段RTA 800℃即造成剝落 31 圖4 3第一階段300℃燒結加上第二階段RTA 850℃通過拉力測試 31 圖4 4 銀包銅膏低溫燒結實驗之接觸電阻趨勢圖 33 圖4 5 銀包銅膏對於低溫燒結之特徵接觸電阻趨勢圖 34 圖4 6 銀包銅膏使用低溫燒結之SEM俯視圖與成份分析 35 圖4 7銀包銅膏使用低溫燒結之SEM剖面圖與成份分析 36 圖4 8 AC39受RTA退火溫度展開實驗之接觸電阻趨勢圖 38 圖4 9 AC39特徵接觸電阻受RTA溫度影響之趨勢圖 39 圖4 10 AC41受RTA退火溫度展開實驗之接觸電阻趨勢圖 41 圖4 11 AC41特徵接觸電阻受RTA溫度影響之趨勢圖 42 圖4 12 AC39低溫燒結溫度展開實驗之接觸電阻趨勢圖 44 圖4 13 AC39特徵接觸電阻受低溫燒結溫度影響之趨勢圖 46 圖4 14 AC41受低溫燒結溫度展開實驗之接觸電阻趨勢圖 48 圖4 15 AC41特徵接觸電阻受低溫燒結溫度影響之趨勢圖 49 圖4 16銀包銅膏對於二階段燒結之SEM俯視圖與成份分析 50 圖4 17銀包銅膏對於二階段燒結之SEM剖面圖與成份分析 51 圖4 18 本研究矽基太陽能電池轉換效率之IV曲線 53 表目錄 表3 1 燒結爐溫度展開 26 表3 2 RTA退火溫度展開 26 表4 1 自製銀包銅膏對於低溫燒結之兩點間的總電阻比較 32 表4 2 銀包銅膏對於低溫燒結之RC、LT and ρc比較 33 表4 3 低溫燒結之元件轉換效率 36 表4 4 AC39對於RTA溫度變化時之兩點間的總電阻比較 37 表4 5 AC39對於RTA溫度變化時之RC、LT and ρc比較 38 表4 6 AC41對於RTA溫度變化時之兩點間的總電阻比較 40 表4 7 AC41對於RTA溫度變化時之RC、LT and ρc比較 41 表4 8第一階段300℃燒結加上第二階段RTA 750℃-800℃之電性資料 42 表4 9 AC39低溫燒結溫度展開之兩點間的總電阻比較 43 表4 10 AC39對於低溫燒結溫度變化時之RC、LT and ρc比較 45 表 4 11 AC41對於燒結爐溫度變化時之兩點間的總電阻比較 47 表4 12 AC41對於低溫燒結溫度變化時之RC、LT and ρc比較 49 表4 13正電極與基板之歐姆接觸燒結實驗整理 52 表4 14 自製銀包銅膏較佳之特徵接觸電阻所對應之效率表現 52 表4 15 本研究矽基太陽能電池之轉換效率 53

    1. J. Szlufcik, Sivoththaman, S., Nlis, J. F., Mertens, R. P., and Van-Overstraeten, R., “Low-cost industrial technologies of crystalline silicon solar cells”,1997.
    2. Becquerel, Memoire Sur Les Effects D´Electriques Produits Sous L´Influence Des Rayons Solaires. Annalen der Physick und Chemie, 1839. ;9:145-149.
    3. J. Zhao, Wang, A., Yun, F., Zhang, G., Roche, D. M., Wenham, S. R., and Green, M. A., “20,000 PERL silicon cells for the "1996 World Solar Challenge" solar car race”, 1997.
    4. R. A. Sinton and Cuevas, A., “Contactless determination of current–voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data”, Applied Physics Letters, vol. 69, pp. 2510-2512, 1996.
    5. G. L. Pearson, “Conversion of Solar to Electrical Energy”, American Journal of Physics, vol. 25, no. 9, p. 591, 1957.
    6. C. Honsberg and S. Bowden, Pv Education [Online] Available www.Pveducation.Org. 2014.
    7. C. Gümüş, Ulutaş, C., and Ufuktepe, Y., “Optical and structural properties of manganese sulfide thin films”, Optical Materials, vol. 29, no. 9, pp. 1183 - 1187, 2007.
    8. J. Zhao, Wang, A., and Green, M. A., “19.8% Efficient Multicrystalline Silicon Solar Cells with Honeycomb Textured Front Surface”, 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion. Vienna, Austria, 1998.
    9. E. Y. Wang, Yu, F. T. S., Sims, V. L., Brandhorst, E. W., and Broder, J. D., “Optimum Design of Anti-reflection coating for silicon solar cells”,10th IEEE Photovoltaic Specialists Conference. pp. 168-171, 1973.
    10. K. R. McIntosh and Baker-Finch, S. C., “OPAL 2: Rapid optical simulation of silicon solar cells”, in 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC), Austin, TX, USA, 2012.
    11. K. Misiakos and Tsamakis, D., “Accurate measurements of the silicon intrinsic carrier density from 78 to 340 K”, Journal of Applied Physics, vol. 74, no. 5, p. 3293, 1993.
    12. A. Mette and et al, “Series resistance characterization of industrial silicon solar cells with screen-printed contacts using hotmelt paste”, Progress in Photovoltaics: Research and Applications, vol. 15, pp. 493-505, 2007.
    13. J. - W. Park, Baeg, K. - J., Ghim, J., Kang, S. - J., Park, J. - H., and Kim, D. - Y., “Effects of Copper Oxide/Gold Electrode as the Source-Drain Electrodes in Organic Thin-Film Transistors”, Electrochemical and Solid-State Letters, vol. 10, no. 11, p. H340, 2007.
    14. C. B. Honsberg, Anwar, K. K., Mehrvarz, H. R., Cotter, J. E., and Wenham, S. R., “Dependence of aluminium alloying on solar cell processing conditions”, 13th Workshop on Crystalline Silicon Solar Cell Materials and Processes. 2003.
    15. S. Glunz. Photonics for High-Efficiency Crystalline Silicon Solar Cells. in EU-PVSEC. 2013.
    16. S. M. Hu, Fahey, P., and Sutton, P., “On Phosphorus Diffusion in Silicon”, On Phosphorus Diffusion in Silicon, vol. 54, pp. 6912-6922, 1983.
    17. J. Zhao, Wang, A., Green, M. A., and Ferrazza, F., “19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells”, Applied Physics Letters, vol. 73, pp. 1991-1993, 1998.
    18. G. Masetti, Severi, M., and Solmi, S., “Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon”, IEEE Transactions on Electron Devices, vol. ED-30, pp. 764–9, 1983.
    19. E. Y. Wang, Yu, F. T. S., Sims, V. L., Brandhorst, E. W., and Broder, J. D., “Optimum Design of Anti-reflection coating for silicon solar cells”,10th IEEE Photovoltaic Specialists Conference. pp. 168-171, 1973.
    20. Bentzen, A., Phosphorus diffusion and gettering in silicon solar cells Dissertation, University of Oslo, 2006.
    21. R. B. Kale and Lokhande, C. D., “Influence of air annealing on the structural, optical and electrical properties of chemically deposited CdSe nano-crystallites”, Applied Surface Science, vol. 223, no. 4, pp. 343 - 351, 2004.
    22. Bauer G. Absolutwerte der optischen Absorptionskonstanten von Alkalihalogenidkristallen im Gebiet ihrer ultravioletten Eigenfrequenzen. Annalen der Physik. 1934 ;411(4):434 - 464.
    23. S.W. Glunz, J. Dicker, M. Esterie, M. Hermie, J. Iserberg, F. Kamerewerd, J. Knobloch, D. Kray, A. Leimenstoll, F. Lutz, D. O wald, R. Preu, S. Rein, E. Schäffer, C. Schetter, H. Schmidhuber, H. Schmidt, M. Steuder, C. Vorgrimler, G. Willeke, High-efficiency silicon solar cells for low-illumination applications, Proceedings of the Photovoltaic Specialists Conference, New Orleans,450-453, 2002.
    24. B. v. Roedern and G. H. Bauer, Why Is the Open-Circuit Voltageof Crystalline Si Solar Cells So Critically Dependent on Emitter- and Base-Doping. 1999.
    25. A. W. Blakers, Shading Losses of Solar-Cell Metal Grids. American Institute of physics, 1992.
    26. Tajima, M., Ikebe, M., Ohshita, Y., Ogura, A., Photoluminescence analysis of iron contamination effect in multicrystalline silicon wafers for solar cells, Journal of Electronic Materials 39 (6), 747-750, 2010.
    27. S. Bowden and Rohatgi, A., “Rapid and Accurate Determination of Series Resistance and Fill Factor Losses in Industrial Silicon Solar Cells”, in 17th European Photovoltaic Solar Energy Conference, Munich, Germany, 2001.
    28. Ballif, C., Huljic, D. M., Willeke, G., Hessler-Wyser, A., Silver thick-film contacts on highly doped n-type silicon emitters: structural and electronic properties of the interface, Applied Physics Letters 82 (12),1878-1880, 2003.
    29. T. Takamoto, Agui, T., Yoshida, A., Nakaido, K., Juso, H., Sasaki, K., Nakamura, K., Yamaguchi, H., Kodama, T., Washio, H., Imazumi, M., andTakahashi, M., “World’s Highest Efficiency Triple-junction Solar Cells Fabricated by Inverted Layers Transfer Process”, 35 IEEE Photovoltaic Specialist Conference. Honolulu HI, USA, 2010.
    30. M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients”, Solar Energy Materials and Solar Cells, vol. 92, pp. 1305–1310, 2008.
    31. J. - W. Park, Baeg, K. - J., Ghim, J., Kang, S. - J., Park, J. - H., and Kim, D. - Y., “Effects of Copper Oxide/Gold Electrode as the Source-Drain Electrodes in Organic Thin-Film Transistors”, Electrochemical and Solid-State Letters, vol. 10, no. 11, p. H340, 2007.
    32. S. Anandan, Wen, X., and Yang, S., “Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells”, Materials Chemistry and Physics, vol. 93, no. 1, pp. 35 - 40, 2005.
    33. R. A. Sinton and Cuevas, A., “Contactless determination of current–voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data”, Applied Physics Letters, vol. 69, pp. 2510-2512, 1996.
    34. M. Alemán, N. B. D. Rudolph, T. Rublack, and S. W. Glunz, Front-Side Metallization Beyond Silver Paste: Silicide Formation / Alternative Technologies. 2008.
    35. A. Goetzberger and Hoffmann, V. U., “Photovoltaic Solar Energy Generation”, p. 232, 2005.
    36. Min Wu,Baoping Li,Yi Cao,Jiangang Song,Ying Sun,Hong Yang,Xueqin Zhang Received: 18 June 2013 / Accepted: 7 September 2013 / Published online: 20 September 2013 Springer Science Business Media New York 2013.
    37. M. Galiazzo et al. 'New Technologies for Improvement of Metallization Line', 24th EUPVSEC, Hamburg 2009.
    38. D.Buzby and A. Dobie, "Fine Line Screen Printing of Thick Film Pastes on Silicon Solar Cells" 41st International Symposium of Microelectronics, IMAPS.
    39. T.Falcon 3rd metallization workshop, 2011 Double printing.
    40. X. Gao et al., "One-Step Screen-Printing Metallization Forming High Aspect Ratio Grid Lines on Crystalline Solar Cells" 25th EUPVSEC (2010) Valencia.
    41. G. Schubert, F. Huster, P. Fath, Physical understanding of printed thick-film front contacts of crystalline Si solar cells—Review of existing models and recent developments, Sol. Energy Mater. Sol. Cells 90 (2006) 3399-3406.
    42. J. Zhao, A. Wang, and M. A. Green, Sol. Energy Mater. And Sol. Cells. 2001.
    43. L. Frisson, M. Honore, R.-Mertens,R. Govaerts, and~R. Van Overstraeten,.“Siliconnsolar cells. wifh scceen printed diffusion andmetallization,” in Proc. 14th IEEE Photovoltaic Specialists Conf., 1980, pp. 941-942.
    44. van der Heide ASH, et al. Mapping of contact resistance and locating shunts on solar cells using Resistance Analysis by Mapping of Potential (RAMP) techniques. 16th European Photovoltaic Solar Energy Conference. 2000 :1438.
    45. D. Pysch, A. Mette, A. Filipovic, S.W. Glunz, Comprehensive analysis of advanced solar cell contacts consisting of printed fine-line seed layers thickened by silver plating, Progress in Photovoltaics: Research and Applications 17 (2009) 101–114.
    46. Z.G. Li, L. Liang, A.S. Lonkin, B.M. Fish, M.E. Lewittes, L.K. Cheng, K.R. Mikeska, Microstructural comparison of silicon solar cells‘ front-side Ag contact and the evolution of current conduction mechanisms, J. Applied Phys. 110 (2011) 074304.
    47. L.K. Cheng, L. Liang, Z.G. Li, Nano-Ag colloids assisted tunneling mechanism for current conduction in front contact of crystalline Si solar cells, Photovoltaic Specialists Conference 34 (2009) 002344-002348.
    48. Zangwill, Andrew. Physics at Surfaces. Cambridge University Press. ISBN 978-0-521-34752-5. Approaches contact from point of view of surface states and reconstruction. 1988.
    49. A. Mette and et al, “Series resistance characterization of industrial silicon solar cells with screen-printed contacts using hotmelt paste”, Progress in Photovoltaics: Research and Applications, vol. 15, pp. 493-505, 2007.
    50. D. Jordan and Nagle, J. P., “Buried contact concentrator solar cells”, Progress in Photovoltaics: Research and Applications, vol. 2, pp. 171-176, 1994.
    51. A. B. Serreze HB. Optimizing Solar Cell Performance by Simultaneous Consideration of Grid Pattern Design and Interconnect Configurations. 13th IEEE Photovoltaic Specialists Conference. 1978 :1-8.
    52. T. Fuyuki, Kondo, H., Yamazaki, T., Takahashi, Y., and Uraoka, Y., “Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence”, Applied Physics Letters, vol. 86, p. 262108, 2005.
    53. M. Alemán, A. Streek, P. Regenfu , A. Mette, R. Ebert, H. Exner, S. W. Glunz, G. Willeke, Laser micro-sintering as a new metallization technique for silicon solar cells, Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden, Germany, 2006.
    54. W. Neu, A. Kress, W. Jooss, P. Fath, E. Bucher, Low-cross multicrystalline back-contact silicon solar cells with screen printed metallization, Solar Energy Materials and Solar Cells 74/1-4 (2002) 139-146.

    無法下載圖示 校內:2021-08-23公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE