| 研究生: |
李聰瑞 Lee, Chung-Jui |
|---|---|
| 論文名稱: |
高效率聚光模組之研究 The Study for High-efficiency Concentrated Optical Module |
| 指導教授: |
林仁輝
Lin, Jen-Fin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 太陽能 、光軌跡 、光學模組 、光學效能 、高精密 、製造 、熱變形 |
| 外文關鍵詞: | Photovoltaic, Light-tracing, Optical module, Optical performance, High-precision, Fabrication, Thermal deformation |
| 相關次數: | 點閱:189 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究分三部份,第一部份是光學模組之較佳化設計,第二部份是針對光學模組未鍍膜前之製造及光學性能評估,第三部份是光學模組於鍍膜後與鍍膜前光學性能之比較。亦針對光學模組鍍膜後,模擬分析模組所產生之光照強度,其中各關鍵零件之溫度分佈及熱變形量。
首先,三種新型光學模組是專為高效率的聚光模組設計。每一個光學模組由三個元件組成,亦即一個反射鏡、及具有不同拋物線輪廓的第二光學元件(SOE)、和一聚光透鏡。不同輪廓設計的聚光透鏡被安裝在反射鏡的開口端,以改善聚集在太陽能電池晶片上之光照強度的均勻性,本研究提出了一種有效的方法,找到這些光學模組幾何形狀的最佳設計值,獲得良好的光照強度分佈的均勻性和高光學性能。光軌跡模擬結果,其最佳設計是根據光照強度的最高峰、最低值,以及最高光學性能折衷的原則。在光軌跡分析中,未經聚光透鏡設計的光學模組中,具有相對高的峰值中心之光照度分佈。當有使用Fresnel聚光透鏡時,可以有效避免高的峰值,達到非常良好的光學性能。當使用球面和非球面的聚光透鏡模組,其光照强度峰值高於Fresnel聚光透鏡,其光學性能僅稍高於使用Fresnel聚光透鏡,但兩者不相上下。
依據光軌跡軟體對光學模組模擬而獲得一個最佳的設計之組合,此光學模組於鍍銀膜前,以超精密加工製造技術製作此光學模組之元件。鍍銀膜前反射鏡元件和二次光學元件(SOE)於設計輪廓值與實際輪廓值,其形狀尺寸誤差及其對模組光學性能之影響進行比較。針對各種光源(如ASTM G173-03),使用光軌跡分析軟體模擬此模組於模擬光譜下之光學性能,包括模組之總光通量、光學效率、最小及最大和平均光照強度。此光學模組已達到良好的光學性能,並且它的光照強度均勻分佈在晶片表面上。在未使用本研究所述之聚光鏡模組時,模組光譜之光照強度的峰值超過三倍。在使用本研究所設計之聚光透鏡組合之模組,其光照強度均勻分佈,且提高光學效率。當使用聚光透鏡的光模組其光學效率高達91%,總光通量超過3W。此效率高於在文獻中之報導。
鍍銀薄膜的反射鏡,為了研究其形狀誤差和鍍銀薄膜對光學性能之影響,將實際輪廓的兩正交拋物線輪廓之平均值,與完美拋物線輪廓(無形狀誤差和表面粗糙度)作比較。
實驗上使用與數值模擬相同的光源,也與模擬結果進行比較,鍍銀薄膜可減少反射鏡面的形狀誤差和表面粗糙度,因而導致在所有光學參數等於或高於不含鍍銀薄膜的反射鏡。使用Fresnel聚光透鏡時之總光通量和光學效率,獲得具有相對高於非球面透鏡的值。使用Fresnel聚光透鏡時之光照強度的均勻性,也優於非球面透鏡的。鍍銀薄膜後在不同波長的光譜波段,高於鍍銀薄膜前反射鏡的光照強度。由鍍銀薄膜光學模組顯示,對本研究所使用兩種類型的聚光透鏡在光學效率上幾乎是定值的上升,也證明在模擬值和實驗結果是一致的。
本研究使用有限元素分析法,針對模組使用非球面聚光鏡及Fresnel lens聚光鏡時,當反射鏡假設以完美反射曲面輪廓或以鍍銀膜後之反射率,模擬分析四種光學模組,組合零件之溫度分佈及熱變形量;分析結果得知,不論使用非球面聚光鏡或Fresnel聚光鏡,當反射鏡假設以完美輪廓反射、或是以鍍銀膜後之反射率時,其晶片面上溫度分佈值小於49.3℃,晶片熱變形量小於0.19μm。
This study is divided into three parts. The first part is the optimum design of the optical module, the second part is to evaluate the fabrications and the optical properties for the optical module before coating, and the third part of the study is compared the optical properties before and after coating for the optical module. The analysis of the temperature distribution and the thermal deformation after Ag coating for the optical module also discussed on this paper.
First, three kinds of novel optical module are designed for high-efficiency light concentration. Each optical module consists of three components, namely a reflector, a second optical element (SOE) with a different parabolic profile, and a concentrating lens. A concentrating lens with various profile designs is installed at the open end of the reflector to improve the uniformity of ray irradiances collected at the solar cell chip. An effective process for finding the optimum design for the geometries of these optical modules is presented to obtain good uniformity in ray irradiance distribution and high optical performance. The results of ray tracing simulations indicate that the optimum design is achieved based on the principle or the compromise of having the lowest value of the highest peak of ray irradiances and the highest optical performances. The optical module designed without a concentrating lens has a relatively high peak at the center of the circular irradiance distribution. The use of a Fresnel lens can impede the high peak effectively and achieve very good optical performance. Modules with spherical and aspheric concentrating lenses have irradiance peaks that are much higher than that of the Fresnel lens although their performance is negligibly higher than that of the Fresnel lens.
The optical modules before the Ag-film coating are fabricated on a high-precision machine tool based on an optimum design attained from ray tracing software simulations. The actual profiles of the reflector and SOE before coating the thin film are compared to the designed profiles to investigate the dimension errors and their influence on optical performance. The total flux, the optical efficiency, and the minimum, maximum, and mean irradiances are evaluated for various ray sources using ray-tracing simulations of the ASTM G173-03 spectrum. The optical module achieves good optical performance and its light irradiance distribution on the chip surface is uniform. The peak value of the irradiance spectrum is over three times that obtained without using the collection module. The concentrating lens thus improves the optical efficiency of the module and irradiance uniformity. The optical efficiency of the optical module with a concentrating lens is as high as 91% and the total flux exceeds 3W. This efficiency is higher than those reported in the literature.
The real profiles of the reflector before and after coating the Ag film are found to be the average of the two orthogonal parabolic profiles. They are then compared to the perfect profile (without profile error and surface roughness) in order to investigate the influence of the profile error and the Ag film on optical performances. Experiments for the same ray source are also carried out to compare with the simulation results. It is determined that Ag-film coating can improve the profile error and surface roughness of the reflector, thus resulting in all optical parameters being either equal to or higher than those of the reflector without Ag coating. The total flux and optical efficiency obtained from the module with the Fresnel lens has values relatively higher than those of the aspheric lens. The irradiance uniformity for the Fresnel lens is also determined to be better than that of the aspheric lens. The irradiance intensity of the reflector after coating the Ag film has a magnitude at various wavelengths higher than that of the reflector without the Ag-film coating. Due to the coating of the Ag film, the optical module shows an almost constant rise in optical efficiency for the two types of concentrating lenses. This characteristic is shown to be valid for both the simulation and experimental results.
The method of FEM was used for the thermal and deformation analyses of the optical module components. Regardless of the simulated thermal source provide by the combinations of the modules, the temperature on the chip surface was lower than 49.3℃, the chip thermal deformation was smaller than 0.19μm.
[1]U.S. Department of Energy, Energy efficiency &renewable energy, 2010 Solar technologies market report, Nov. 2011.
[2]Martin A. G., Keith Emery, H. Yoshihiro and W.. Wilhelm, “Solar Cell Efficiency Tables”, Prog. Photovolt: Res. Appl. 17(2009) 85–94.
[3]Dadouche F., Bethoux O., Kleider J. P., “New silicon thin-film technology associated with original DC-DC converter: An economic alternative way to improve photovoltaic systems efficiencies”, Energy 36(2011) 1749-1757.
[4]King R. R., Law D. C., Edmondson K. M., Fetzer C. M., Kinsey G. S., Yoon H. et al., ”Advances in High-Efficiency III-V Multijunction Solar Cell”, Advances in OptoElectronics Volume, 2007 Article ID 29523, doi:10.1155/2007/29523.
[5]Gratzel Michael, “Conversion of sunlight to electric power by nanocrystalline dye sensitized solar cells”, Journal of Photochemistry and Photobiology A: Chemistry 164(2004) 3-14.
[6]Barnett A., Kirkpatrick D. and Honsberg, “Very high efficiency solar cell modules”, Prog. Photovolt. 17( 2009) 75–83.
[7]Bett A. W., Burger B., Dimroth F., Siefer G., Lerchenmüller H., “High-concentration PV using III-V solar cells”, IEEE 4th World Conference on Photovoltaic Energy Conversion, May 7-12 (2006) Hawaii.
[8]Rumyantsev V. D., Sadchikov N. A., Chalov A. E., Ionovaa E. A., Friedmanb D. J., Glennc G., “Terrestrial concentrator PV modules based on GaInP/GaAs/Ge Tj cells and minilens panels”, 1-4244-0016-3/06/2006 IEEE 632-35.
[9]Mark S., Stephen J. H., “Shield for solar radiation collector”, Solfocus Inc. Patent No. US7473000 B2 Jan. 6 2009.
[10]Garg H. P., Adhikari R. S., “Optical design calculations for CPCs”, Energy, 23(10)(1998) 907-909.
[11]Gallo M., Mescia L., Losito O., Bozzetti M., Prudenzano F., “Design of optical antenna for solar energy collection”, Energy 2011; doi:10.1016/ j. Energy 2011.02.026.
[12]Siefer G., Bett A. W., “Experimental comparison between the power outputs of Flatcon@ modules and silicon flat plate modules”, 0-7803-87074/05 IEEE, 643-646.
[13]Jose L. A., Vicente D., Jesus A., “Optics design key points for high gain photovoltaic solar energy concentrators”, Proc. of SPIE 2005; 5962 596210 : 9 pages.
[14]Ekkard B., Alexander G., Daniel P., Jose B., Pablo B., Vicente D., “Design and manufacture of aspheric lenses for novel high efficient photovoltaic concentrator modules”, 3rd International Workshop on CPV Session II, Bremerhaven, Germany, October 20-22, 2010.
[15]IEK Industry Service and Information Network, http://ieknet.itri.org.tw, “Introduction and development outlook for the optic-electric technology of the concentration photovoltaic”, Part I and Part II, Sep. 2009.
[16]Salas V., Olias E., “Overview of the photovoltaic technology status and perspective in Spain”, Renewable and Sustainable Energy Reviews 13(2009) 1049-1057.
[17]Tzeng G. H., Shiau T. A., Lin C. Y., “Application of multicriteria decision making to the evaluation of new energy system development in Taiwan”, Energy 17(10)(1992) , 983-992.
[18]Hein M., Meusel M., Baur C., Dimroth F., Lange G., Siefer G., “Characterisation of a 25 % high-efficiency Fresnel lens module with GaInP/GaInAs dual-junction concentrator solar cells”, 17th EU-PVSEC Munich October, Paper OB5.4, 2001.
[19]Bett A. W., Baur C., Dimroth F., Lange G., Meusel M., Riesen S. V., “FlatconTM-modules: technology and characterization”, IEEE 3rd World Conference on Photovoltaics, May 12-16, Osaka/Japan, 2003.
[20]Terao A., Mulligan W. P., Daroczi S. G., Pujol O. C., Verlinden P. J., Swanson R. M., “A mirror-less design for micro-concentrator modules”, Photovoltaic Specialists Conference, Conference Record of the Twenty-Eighth IEEE 2000 1416-1419.
[21]Alvarez J. L., Cabrera J., Diaz V., Mateos C., Montoya N., Alonso J., “Industrialization of 1000X concentration photovoltaic modules”, Proc. of SPIE 61970(2006) I-1 1-5.
[22]Pierick D., Noller R., “Effect of processing conditions on shrinkage”, 49th Annual Technical Conference-ANTEC ’91, p.252-258.
[23]Beall G. I., “Optimum design for injection molding. Shrinkage depends on wall thickness”, Kunststoffe-German Plastics,v 81 n6(1991) 28-30.
[24]Lee W. B., Cheung C. F., Chiu W. M., Leung T. P., “An investigation of residual form error compensation in the ultra precision machining of aspheric surfaces”, Journal of Materials Processing Technology, 99(2000) 129-134.
[25]Cho M. W., Kim G. H., Seo T. I., Hong Y. C., Cheng H. H., “Integrated machining error compensation method using OMM data and modified PNN algorithm”, International Journal of Machine Tools & Manufacture46 (2006) 1417–1427.
[26]Depince P., Hascoet J. Y., “Active integration of tool deflection effects in end milling Part 2, Compensation of tool deflection”, International Journal of Machine Tools & Manufacture 46(2006) 945-956.
[27]Paul Ed, Evans C. J., Mangamelli A., McGlauflin M. L., and Polvanit R. S., “Chemical Aspects of Tool Wear in Single Point Diamond Turning”, Precision Engineering (1996) 14-19.
[28]“Introduction to Diamond Machining”, Institute of Micromanufacturing, http://www.latech.edu/ tech/engr/ifm/diamintro.html.
[29]Gerchman M. C., “Specifications and Manufacturing Considerations of Diamond-machined Optical Components”, Technical Report, Pneumo Precision, Inc. 1986.
[30]Hung K. Y., Chang L. W., Tseng F. G., Chiou J. C. and Chiu, “Optimum electrostatic force control for fabricating a hybrid UV-curable aspheric lens”, Journal of Micromechanics and Microengineering 20(2010), 075001, doi: 10.1088/0960-1317/20/7/075001.
[31]Kim H. J., Kim H. U., Kim S. S., Park Y. P., Kim J. H., Cha D. H., “ Fabrication and optical evaluation of aspheric glass lenses for 3 megapixel zoom camera phone module”, Optical Review No.3 14(2007) 145-150, doi: 10.1007/BF02919415.
[32]Hung K. Y., Chen Y. K., Huang S. H., Shye D. C., “Molding and hot forming techniques for fabricating plastic aspheric lenses with high blue-light transmittance”, Microsystem technologies Vol.16 Num.8-9 (2010) 1439-1444, doi:10.1007/s00542-009-0936-9
[33]Lee W. B., Gao D., Cheung C. F., Li J. G., “Computer-integrated optics design and tool path generation in virtual machining of aspheric surfaces”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture Vol.217 No.9(2003) 1285-1294.
[34]Chun-Yu Wu, Astrid R. Jacobson , Magdeline Laba, Philippe C. Baveye, “Accounting for surface roughness effects in the near-infrared reflectance sensing of soils”, doi:10.1016/j.geoderma.2009.06.002, Geoderma 152(2009) 171-180.
[35]Su-Hwan Lee , Dal-Ho Kim , Ji-Heon Kim, Gon-Sub Lee, Jea-Gun Park, “Effect of metal-reflection and surface-roughness properties on power-conversion efficiency for polymer photovoltaic cells”, J. Phys. Chem. 113(2009) 21915-20.
[36]Makiko Yonehara, Tsutomu Matsui, Koichiro Kihara, Hiroaki Isono, Akira Kijima,Toshio Sugibayashi et al., “Experimental relationships between surface roughness, glossiness and color of chromatic colored metals”, Materials Transactions 45, No. 4 (2004) 1027-32.
[37]Michacl Herrmann, Christian Wiegand, Joachim Jonuscheit, Rene Beigang, “The influence of surface roughness on THz reflection measurement”, 978-1-4244-5417-4/09, IEEE 2009.
[38]Baccaro S, Cecilia A, Di Sarcina I, Piegari A, “Optical coatings behavior under γ irradiation for space applications”, Proceedings of SPIE 5494(2004) 529-35. (SPIE, Bellingham, WA, 2004), 0277-786X/04, doi: 10.1117/12.553602.
[39]David C. Miller, Michael D. Kempe, Cheryl E. Kennedy, Sarah R. Kurtz, “Analysis of transmitted optical spectrum enabling accelerated testing of multijunction concentrating photovoltaic designs”, Optical Engineering 50(1), 013003, January 2011, 17 pages.
[40]Susemith I., Schissel P., “Specular reflectlance properties of silvered polymer materials”, Solar Energy Material 16(1987) 403-421.
[41]L. R. Dahal, D. Sainju, J. Li, Podraza N. J., Michelle N Sestak, and Robert W Collins, “Comparison of Al/ZnO and Ag/ZnO interfaces of back-reflectors for thin film Si:H photovoltaics”, 978-1-4244-2950-9/09, 6 pages IEEE 2009.
[42]Goikhman A. Y., Sheludyakov S. A., Bogdanov E. A., “Ion Beam Deposition for novel thin film materials and coating”, Materials Science Forum 64 (2011) 195-200.
[43]P. Munzert, U. Schulz, N. Kaiser, “High reflectance coatings on plastic optical systems”, Vakuum in Forschung und Praxi, No.1, 19(2007) 11-15.
[44]Lee C. J. and Lin J. F., “Lens designs by ray tracing analyses for high-performance reflection optical modules”, J. Opt. 12(2010), 095501 1-9.
[45]Lambda Research Corporation, USA, “TracePro software for Opto-Mechanical modeling User Manual ”, Release 6 Revision 3( 2010) 2.7–2.13.
[46]Sun W., McBride J. W. and Hill, “A new approach to characterising aspheric surfaces”, Precis. Eng. 34(2010) 171-179.
[47]Welford W. T., Winston R., “High collection nonimaging optics”, San Diego, Academic Press, ISBN-0127428852, (1989) 53-163.
[48] A. Terao, S. G. Daroczi, S. J. Coughlin, W. P. Mulligan, and R. M. Swanson, “New developments on the flat-plate micro-concentrator module”, 3rd world Conference on Photovoltaic Energy Conversion, Osaka, Japan May 11-18, (2003) 861-864.
[49]Brogren M., Nostell P., Bjo Nd and Karlsson, “Optical efficiency of a PV–thermal hybrid CPC module for high latitudes”, Sol. Energy 69(2000) 173–185.
[50]Nilsson, “Optical design and characterization of solar concentrators for photovoltaics”, Report EBD-T-05/6, Lund University Faculty of Engineering LTH, chap 6(2005) 53–56.
[51]Todorof B., “A 450 suns concentrator module design”, 0160-8371/88/0000-1347, IEEE (1988) 1347-1352.
[52]Hernandez M., Benitez P., Miiiano J. C., Alvarez J. L., Diaz V., Alonso J., “Sunlight spectrum on cell through very high concentration optics”, 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, May 11-18, (2003) 889-891.
[53]Diaz V., Alonso J., Hemandel M., Alvarez J. L., Benitel P., Minano J. C., “Progress in the manufacture of ultra flat optics for very high concentration flat panels”, 0-7803-7471- 1 /02, IEEE (2002) 1580-1583.
[54]Roland Winston, Juan C. Minano and Pablo Benitez with contributions by Narkis Shatz and John C. Bortz., “Nonimaging optics”, Chapter 10, Burlington, MA : Elsevier Academic Press, ISBN-0127597514, (2005) 244-63.
[55]Welford, W. T., Winston R., “Upper bound on the efficiency of certain nonimaging concentrators in the physical-optics model”, J OPT SOC AM, Sep. V 72, N 9(1982) 1244-1248.
[56]Winston R., Joseph J., O'Gallagher, Randy Gee, “Nonimaging solar concentrator with uniform irradiance”, Proc. of SPIE Vol. 5529 (SPIE, Bellingham, WA, 2004) • 0277-786X/04, doi: 10.1117/12.561303.
[57]Winston R., “Nonimaging optics design which are functional of the acceptance angle”, SPIE , 1779(1992), O-8194-0951-01921.
[58]Peiponen K. E., Tsuboi T., “Metal surface roughness and optical reflectance”, Optics & Laser Technology No. 2, 22(1990) 127-130.
[59]Bennett H. E., Porteus J. O., “Relation between surface roughness and specular reflectance at normal incidence”, AD262572, Journal of the Optical Society of America, issue 2, Feb., 51 (1961) 123-129.
[60]Eugene Hecht, “The Propagation of Light”, Optics the 3rd edition (Addison Wesley Longman, Inc.) chapter 4(1956) 127-131.
[61]Michael R. J., Ruth C. K., Fred C. G., Keith R., John M. F., Charles C., “Development of silver coating options for the Gemini 8-M Telescopes Project”, Part of the SPIE Conference on Advanced Technology Optical/IR Telescopes VI Kona, Hawaii, March, SPIE Vol. 3352(1998), 0277-786x/98.