| 研究生: |
吳冠穎 Wu, Guan-Ying |
|---|---|
| 論文名稱: |
鍍銦錫光伏銅導帶模組微觀組織特性與通電機制研究 A Study on Characteristics of Microstructure and Electrical Mechanism of In-Sn Coated Photovoltaic Copper Ribbon Modules |
| 指導教授: |
洪飛義
Hung, Fei-Yi 呂傳盛 Lui, Truan-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 光伏導帶(銲帶) 、銦合金 、銀膠 、通電 、介金屬化合物 |
| 外文關鍵詞: | Photovoltaic ribbon, In alloy, Ag paste, Intermetallic compound |
| 相關次數: | 點閱:112 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為探討矽基板正面銀膠減量的狀況下光伏模組的可行性,並選用金屬純In取代一般常用的銲錫材料做為光伏模組的銲料層,考量到純In價格較昂貴,以靠近In-Sn共晶組成且低熔點(120℃)的In-50Sn合金做為另一研究銲錫材料。
研究結果顯示純In光伏模組與In-50Sn光伏模組經通電實驗後,純In光伏模組的介金屬化合物 (Intermetallic compound, IMC)厚度有上升趨勢,In-50Sn光伏模組的IMCs則穩定無顯著成長且電阻值較純In光伏模組低,因此針對性質較佳的In-50Sn光伏模組做更進一步的長時間七天通電實驗,確認在In-50Sn光伏模組由於Sn層堆積在AgIn2上抑制其成長,使得導電性穩定不下降。
由於光伏模組是以一端回銲在矽基板正面一端在背面的方式串聯起來,研究第二部分為探討光伏導帶回銲在矽基板背面的電性,結果可得背部界面微觀組織與電性變化趨勢皆與正面相仿,唯背面IMCs厚度較正面薄,因此導電性較佳。
In-50Sn光伏模組導電性較純In光伏模組佳,且沒有一般無鉛銲銲錫材料會因界面IMCs成長導致電阻值上升的缺點,使光伏模組不會隨著應用時間越長電性越差,由研究結果認為In-50Sn光伏導帶為具發展與前瞻性的光伏模組應用性。
This is a study on the applicability of reduced Ag paste of wafer. Reducing Ag paste may lower the wettability and conductivity of photovoltaic modules (P.V. modules), so this study chooses In as solder in P.V. ribbon. However, there is high cost of In. According to the eutectic point of In-Sn phase diagrams, the study also chooses In-50Sn alloy as the other solder material.
The result showed that the IMCs of In modules will grow after current test, the resistance also become higher because of thick IMCs. But the IMCs of In-50Sn modules remain constant after current test. There are good conductivity and stable IMCs in In-50Sn modules, so the study chose In-50Sn modules to do further experiment, which prolonged the time of current test to 7 days, ensuring that the IMCs of In-50Sn modules do not grow obviously. As the result, this characteristic is true.
To connect each P.V. modules, P.V. ribbons will be reflowed on front side and reverse side of wafer respectively. The second part of this study is to investigate the conductivity of reverse side of wafer. According to the results, the microstructure and growing tendency of resistance are almost the same as front side of wafer. The thickness of IMCs is thinner than front side of wafer, so the conductivity is better.
The conductivity of In-50Sn coated modules is better than In coated modules. The common disadvantage in most Pb-free solder modules is over growing of IMCs, which will decay the function of P.V. modules. However, this disadvantage doesn’t exist in In-50Sn modules. In-50Sn alloy may be a potential material as Pb-free solder in P.V. modules.
1. S. Schindler and S. Wiese, "Investigation of wettability and interface reactions of Sn-Pb, Sn-Cu, Sn-Ag and Sn-Ag-Cu solders for solar cell interconnections". 2010: pp. 1-5.
2. S. Wiese, R. Meier, F. Kraemer, and J. Bagdahn, "Constitutive behaviour of copper ribbons used in solar cell assembly processes". 2009: pp. 1-8.
3. 黃帝榕,"Sn-xZn/Al光伏模組接合界面組織特性與通電機制研究。"國立成功大學材料科學及工程學系碩士論文,民國103年。
4. G. Cuddalorepatta, A. Dasgupta, S. Sealing, J. Moyer, T. Tolliver, and J. Loman, "Durability of Pb-free solder between copper interconnect and silicon in photovoltaic cells". Progress in Photovoltaics: Research and Applications, 2010. 18(3): pp. 168-182.
5. A. Zoran Miric and A. Grusd, "Lead‐free alloys". Soldering & Surface Mount Technology, 1998. 10(1): pp. 19-25.
6. Y. Tian, Zhang, Q. M., and Z. Q. Li, “Electrical transport properties of Ag3Sn compound.” Solid State Communications 151 .20, 2011: pp.1496-1499.
7. J. W. Yoon and S. B. Jung, "Interfacial reactions between Sn-0.4Cu solder and Cu substrate with or without ENIG plating layer during reflow reaction". Journal of Alloys and Compounds, 2005. 396(1-2): pp. 122-127.
8. Vianco, Paul T., and Darrel R. Frear. ”Issues in the replacement of lead -bearing solders.“ JOM 45.7, 1993: pp. 14-19.
9. B. Trumble, “GET THE LEAD OUT”, IEEE Spectrum, 1998, pp. 55-60.
10. C.M.L. Wu, D.Q. Yu, C.M.T. Law, and L. Wang, "Properties of lead-free solder alloys with rare earth element additions". Materials Science and Engineering: R: Reports, 2004. 44(1): pp. 1-44.
11. 翁敏航,"太陽能電池-原理、元件、材料、製程與檢測技術。"民國99年:83-92頁.
12. S. Nieland, M. Baehr, A. Boettger, A. Ostmann, H. Reichl, “Advantages of microelectronic packaging for low temperature lead free soldering of thin solar cells”, 22th European Photovoltaic Solar Energy Conference, Milan, Italy, September, 2007.
13. R. Lathrop, K. Pfluke, “Novel: approaches to benchmarking solar cell tabbing solderability”, Proceedings 26th European International Conference on Photovoltaic Solar Energy Location: Hamburg, Germany, 2011, p. 9.
14. C.-M. Chen and S.-W. Chen, "Electric current effects on Sn/Ag interfacial reactions". Journal of Electronic Materials, 1999. 28(7): pp. 902-906.
15. K. Suganuma, “Advances in lead-free electronics soldering”, Current Opinion in Solid State and Materials Sciences, Vol. 5 (1), 2001, pp. 55-64.
16. K. J. Chen, F. Y. Hung, T. S. Lui, L. H. Chen, D. W. Qiu, and T. L. Chou, "Microstructure and electrical mechanism of Sn–xAg–Cu PV-ribbon for solar cells". Microelectronic Engineering, 2014. 116: pp. 33-39.
17. N. Saunders and A.P. Miodownik, "The Cu-Sn (Copper-Tin) system". Bulletin of Alloy Phase Diagrams, 1990. 11(3): pp. 278-287.
18. K. S. Bae and S. J. Kim, "Microstructure and adhesion properties of Sn–0.7Cu/Cu solder joints". Journal of Materials Research, 2011. 17(04): pp. 743-746.
19. D. R. Frear, J. W. Jang, J. K. Lin, and C. Zhang, "Pb-free solders for flip-chip interconnects". Jom, 2001. 53(6): pp. 28-33.
20. A. A. Wronkowska, A. Wronkowski, L. Skowronski, ”Non-destructive characterization of In/Ag and In/Cu diffusive layers”, Journal of Alloys and Compounds 479, 2009 ,
pp. 583-588.
21. B. Gollas, J. H. Albering, K. Schmut, V. Pointner, R. Herber, J. Etzkorn, Intermetallics 16, 962, 2008.
22. J. C. Lin, L. W. Huang, G. Y. Jang, S.L. Lee, Thin Solid Films 410, 212, 2002.
23. T. Takahashi, S. Komatsu, T. Kono, Electrochem. Solid-State Lett. 12, H263, 2009.
24. W. K. Choi, D. Yu, C. Lee, L. Yan, A. Yu, S.W. Yoon, J. H. Lau, M. G. Cho, Y. H. Jo, H. M. Lee, in 58th Electronic Components and Technology Conference, 2008, p.1294.
25. L. Snugovsky, P.Snugovsky, D. D. Perovic and J. W. Rutter, “Formation of microstructure in Ag-In-Sn solder alloys”. Materials Science and Technology, 23:4, pp.432-437.
26. T. H. Chuang, Y. T. Huang and L. C. Tsao, “AgIn2/Ag2In Transformations in an In-49Sn/Ag Soldered Joint under Thermal Aging”. Journal of Electronic Materials, Vol. 30, No. 8, 2001.
27. C. Lejuste, F. Hodaj, L. Petit, “Solid state interaction between a Sn-Ag-Cu-In solder alloy and Cu substrate”. Intermetallics 36, 2013, pp. 102-108.
28. D. Ma, W.D. Wang, and S. K. Lahiri, "Scallop formation and dissolution of Cu–Sn intermetallic compound during solder reflow". Journal of Applied Physics, 2002. 91(5): p. 3312.
29. "Alloy Phase Diagrams". ASM Metals Handbook, vol. 3, 1992, p. 248, 743.
30. Y. Tian, C. Hang, X. Zhao, B. Liu, N. Wang, and C. Wang, “Phase transformation and fracture behavior of Cu/In/Cu joints formed by solid-liquid interdiffusion bonding”. J Mater Sci: Mater Electron, 2014, 25: pp. 4170-4178.
31. D. G. KIM, C. Y. Lee, S. B. Jung, “Interfacial reactions and intermetallic compound growth between indium and copper”. Journal of Materials Science: Materials in Electronics 15, 2004, pp. 95-98.
32. K. N. Subramanian, “Lead-Free Electronic Solders”. A special issue of Journal of Materials Science: Materials in Electronics, 2007.
33. J. Sopousek, M. Palcut, E.Hodulova and J. Janovec, “Thermal Analysis of the Sn-Ag-Cu-In Solder Alloys”. Journal of electronic materials, vol. 39, No. 3, 2010, pp. 312-317.
34. M. B. S. Nieland, A. Boettger, A. Ostmann and H. Reichl, "Advantages of microelectronic packaging for low temperature lead free soldering of thin solar cells". 22nd European Photovoltaic Solar Energy Conference and Exhibition, 2007.
35. J. R. Black, "Electromigration failure modes in aluminum metallization for semiconductor devices". Proceedings of the IEEE, 1969. 57(9): pp. 1587-1594.
36. J. R. Black, "Electromigration A brief survey and some recent results". IEEE Transactions on Electron Devices, 1969. 16(4): pp. 338-347.
37. J. W. Nah, J. O. Suh, and K. N. Tu, "Effect of current crowding and Joule heating on electromigration-induced failure in flip chip composite solder joints tested at room temperature". Journal of Applied Physics, 2005. 98(1): p. 013715.
38. 陳欣楷,"以數值分析來研究覆晶銲點之電遷移現象。"中央大學化學工程與材料工程學系學位論文,2007: 1-85頁。
39. 許琳,"Sn-Cu及Sn-Cu-Zn光伏銅帶之模組界面組織特性與通電機制研究。"國立成功大學材料科學及工程學系碩士論文,2016: 1-84頁。
40. D. R. Frear, S. N. Burchett, H. S. Morgan and J. H. Lau, “The Mechanmics of Solder Alloy Interconnects”, Springer, 1994, p. 60.
校內:2023-08-01公開