| 研究生: |
張彤 Chang, Tung |
|---|---|
| 論文名稱: |
易腐性商品庫存之決策支援模式-以外送平台全聯線上購PXGo!為例 A Decision Support Model for Perishable Products Inventory: The Case of CHUAN LIAN Online Shopping Platform PXGo! |
| 指導教授: |
林珮珺
Lin, Pei-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 易腐性商品 、動態定價 、連續利潤模型 、最佳化控制理論 |
| 外文關鍵詞: | perishable product, dynamic pricing, continuous profit model, optimal control theory |
| 相關次數: | 點閱:73 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在新冠肺炎疫情影響之下,人們為了避免與他人面對面接觸,轉向更頻繁地透過線上購物平台來購買生活所需的物品。本研究以全聯線上購平台之易腐性商品為例,因商品品質隨著時間快速劣化之特性,使零售商不適合一次大量進貨,其進貨頻率較一般耐久財高。目前全聯線上購平台商品是否顯示缺貨,均倚靠管理階層的經驗作決策,在人為主觀意識的差異下,也使得每間全聯門市經理對於進貨標準不一致,導致商品存貨不足或過期報廢的狀況,進而造成全聯的經濟損失以及食物的浪費。本研究發展零售商的決策支援模式,透過文獻回顧的方式確定平台上消費者需求以及零售商的成本結構,進而建立零售商的連續利潤模型,商品價格以動態定價的方式,應用最佳化控制理論求得控制變數的最佳控制路徑,並透過案例分析的方式驗證模型的有效性。研究結果發現零售商採用每日進貨不同商品數量的策略會帶來較高的利潤,若使用進貨成本函數計算的方式,會明顯地降低零售商的銷貨成本,並且使零售商提高17%的利潤,本研究將此研究結果提供經營管理階層數據資料參考,輔助其作管理上之決策,藉以提升全聯線上購整體的服務品質,並且創造更多的利潤空間,以達企業追求利潤極大化的目標。
During the COVID-19 pandemic, people have increased their online shopping activity to buy essentials and avoid in-person interactions. This study focuses on perishable products sold on the PXGo! online platform. Because these products deteriorate more quickly than shelf-stable goods, retailers can't buy them in bulk, leading to more frequent restocking. Currently, the PXGo! platform relies on manager experience to spot shortages, causing inconsistency in restocking among store managers due to personal differences. This leads to stock shortages, food waste, and ultimately economic losses for PXGo! To address this issue, our research develops a support model for retailers. We analyze customer demands and retailer costs using a thorough literature review. Applying a continuous profit model, we use optimal control theory to set prices dynamically and determine the best way to manage stock. We confirm the model's success through case studies. Our findings suggest that replenishment of varying quantities of different products daily boosts retailer profits. By using the replenishment cost function, we significantly cut selling costs and increase profits by 17%. This research equips operational and management levels with data to enhance decision-making. The findings help PXGo! improve its online shopping quality and increase profits, aligning with the company's goal of maximizing returns.
英文文獻
Anjos, M. F., Cheng, R. C., & Currie, C. S. (2005). Optimal pricing policies for perishable products. European Journal of Operational Research, 166(1), 246-254.
Aung, M. M., & Chang, Y. S. (2014). Temperature management for the quality assurance of a perishable food supply chain. Food Control, 40, 198-207. https://doi.org/https://doi.org/10.1016/j.foodcont.2013.11.016
Balasubramanian, S., & Bhardwaj, P. (2004). When not all conflict is bad: Manufacturing-marketing conflict and strategic incentive design. Management Science, 50(4), 489-502.
Banerjee, T., Mishra, M., Debnath, N. C., & Choudhury, P. (2019). Implementing e-commerce model for agricultural produce: A research roadmap. Periodicals of Engineering and Natural Sciences (PEN), 7(1), 302-310. https://doi.org/http://dx.doi.org/10.21533/pen.v7i1.353
Baron, O. (2010). Managing perishable inventory. Wiley encyclopedia of operations research and management science.
Bhunia, A. K., & Maiti, M. (1998). Deterministic inventory model for deteriorating items with finite rate of replenishment dependent on inventory level. Computers & Operations Research, 25(11), 997-1006.
Blackburn, J., & Scudder, G. (2009). Supply chain strategies for perishable products: the case of fresh produce. Production and Operations Management, 18(2), 129-137.
Cachon, G. P., & Swinney, R. (2009). Purchasing, pricing, and quick response in the presence of strategic consumers. Management Science, 55(3), 497-511.
Chang, C.-T., Ouyang, L.-Y., Teng, J.-T., & Cheng, M.-C. (2010). Optimal ordering policies for deteriorating items using a discounted cash-flow analysis when a trade credit is linked to order quantity. Computers & Industrial Engineering, 59(4), 770-777.
Chaudhary, V., Kulshrestha, R., & Routroy, S. (2018). State-of-the-art literature review on inventory models for perishable products. Journal of Advances in Management Research, 15(3), 306-346. https://doi.org/10.1108/JAMR-09-2017-0091
Cheng, M., & Wang, G. (2009). A note on the inventory model for deteriorating items with trapezoidal type demand rate. Computers & Industrial Engineering, 56(4), 1296-1300.
Chew, E. P., Lee, C., & Liu, R. (2009). Joint inventory allocation and pricing decisions for perishable products. International Journal of Production Economics, 120(1), 139-150.
Dasu, S., & Tong, C. (2010). Dynamic pricing when consumers are strategic: Analysis of posted and contingent pricing schemes. European Journal of Operational Research, 204(3), 662-671.
Eom, S., & Kim, E. (2006). A survey of decision support system applications (1995–2001). Journal of the Operational Research Society, 57(11), 1264-1278. https://doi.org/10.1057/palgrave.jors.2602140
Frank, K. C., Ahn, H. S., & Zhang, R. Q. (2009). Inventory policies for a make‐to‐order system with a perishable component and fixed ordering cost. Naval Research Logistics (NRL), 56(2), 127-141.
Fu, H., Manogaran, G., Wu, K., Cao, M., Jiang, S., & Yang, A. (2020). Intelligent decision-making of online shopping behavior based on internet of things. International Journal of Information Management, 50, 515-525.
Gamkrelidze, R. (2013). Principles of Optimal Control Theory (Vol. 7). Springer Science & Business Media.
Goedhart, J., Haijema, R., & Akkerman, R. (2022). Inventory rationing and replenishment for an omni-channel retailer. Computers & Operations Research, 140, 105647.
Goyal, S. K., & Giri, B. C. (2001). Recent trends in modeling of deteriorating inventory. European Journal of Operational Research, 134(1), 1-16. https://doi.org/https://doi.org/10.1016/S0377-2217(00)00248-4
Haijema, R. (2014). Optimal ordering, issuance and disposal policies for inventory management of perishable products. International Journal of Production Economics, 157, 158-169. https://doi.org/https://doi.org/10.1016/j.ijpe.2014.06.014
Hsieh, T.-P., & Dye, C.-Y. (2010). Optimal replenishment policy for perishable items with stock-dependent selling rate and capacity constraint. Computers & Industrial Engineering, 59(2), 251-258.
Hsu, P., Wee, H., & Teng, H. (2010). Preservation technology investment for deteriorating inventory. International Journal of Production Economics, 124(2), 388-394.
Huang, J., Leng, M., & Parlar, M. (2013). Demand functions in decision modeling: A comprehensive survey and research directions. Decision Sciences, 44(3), 557-609.
Kamien, M. I., & Schwartz, N. L. (1971). Sufficient conditions in optimal control theory. Journal of Economic Theory, 3(2), 207-214.
Kopalle, P., Biswas, D., Chintagunta, P. K., Fan, J., Pauwels, K., Ratchford, B. T., & Sills, J. A. (2009). Retailer pricing and competitive effects. Journal of Retailing, 85(1), 56-70.
Lall, S., & West, M. (2006). Discrete variational Hamiltonian mechanics. Journal of Physics A: Mathematical and general, 39(19), 5509.
Lin, P.-C., & Shue, L.-Y. (2005). Application of optimal control theory to product pricing and warranty with free replacement under the influence of basic lifetime distributions. Computers & Industrial Engineering, 48(1), 69-82. https://doi.org/https://doi.org/10.1016/j.cie.2004.07.009
Lin, P.-C., Wang, J., & Chin, S.-S. (2009). Dynamic optimisation of price, warranty length and production rate. International Journal of Systems Science, 40(4), 411-420.
Liu, G., Zhang, J., & Tang, W. (2015). Joint dynamic pricing and investment strategy for perishable foods with price-quality dependent demand. Annals of Operations Research, 226(1), 397-416. https://doi.org/https://doi.org/10.1007/s10479-014-1671-x
Lu, L., Zhang, J., & Tang, W. (2016). Optimal dynamic pricing and replenishment policy for perishable items with inventory-level-dependent demand. International Journal of Systems Science, 47(6), 1480-1494.
Maity, K., & Maiti, M. (2009). Optimal inventory policies for deteriorating complementary and substitute items. International Journal of Systems Science, 40(3), 267-276.
Ortega, M., & Lin, L. (2004). Control theory applications to the production–inventory problem: a review. International Journal of Production Research, 42(11), 2303-2322. https://doi.org/10.1080/00207540410001666260
Patil, H., & Divekar, B. R. (2014). Inventory management challenges for B2C e-commerce retailers. Procedia Economics and Finance, 11, 561-571.
Raju, C., Narahari, Y., & Ravikumar, K. (2006). Learning dynamic prices in electronic retail markets with customer segmentation. Annals of Operations Research, 143(1), 59-75.
Roy, A., & Maiti, M. (2010). A volume flexible production-policy for randomly deteriorating item with trended demand and shortages. International Journal of Production Economics, 128(1), 188-199.
Roy, A., Sana, S. S., & Chaudhuri, K. (2012). Optimal replenishment order for uncertain demand in three layer supply chain. Economic Modelling, 29(6), 2274-2282.
Saha, S. K., Duarte, P., Silva, S. C., & Zhuang, G. (2022). The role of online experience in the relationship between service convenience and future purchase intentions. Journal of Internet Commerce, 1-28.
Salehi, F., Abdollahbeigi, B., Langroudi, A. C., & Salehi, F. (2012). The impact of website information convenience on e-commerce success of companies. Procedia-social and Behavioral Sciences, 57, 381-387.
Sethi, S. P. (2019). What is optimal control theory? Springer International Publishing.
Shen, D., Lai, K. K., Leung, S. C., & Liang, L. (2011). Modelling and analysis of inventory replenishment for perishable agricultural products with buyer–seller collaboration. International Journal of Systems Science, 42(7), 1207-1217.
Sheu, J.-B. (2005). A multi-layer demand-responsive logistics control methodology for alleviating the bullwhip effect of supply chains. European Journal of Operational Research, 161(3), 797-811. https://doi.org/https://doi.org/10.1016/j.ejor.2003.08.051
Shui, W., & Li, M. (2020). Integrated pricing and distribution planning for community group purchase of fresh agricultural products. Scientific Programming, 2020. https://doi.org/https://doi.org/10.1155/2020/8839398
Skouri, K., Konstantaras, I., Papachristos, S., & Ganas, I. (2009). Inventory models with ramp type demand rate, partial backlogging and Weibull deterioration rate. European Journal of Operational Research, 192(1), 79-92.
Sloof, M., Tijskens, L. M. M., & Wilkinson, E. C. (1996). Concepts for modelling the quality of perishable products. Trends in Food Science & Technology, 7(5), 165-171. https://doi.org/https://doi.org/10.1016/0924-2244(96)81257-X
Suhaily, L., & Soelasih, Y. (2017). What effects repurchase intention of online shopping. International Business Research, 10(12), 113-122.
Wee, H.-M., Lo, C.-C., & Hsu, P.-H. (2009). A multi-objective joint replenishment inventory model of deteriorated items in a fuzzy environment. European Journal of Operational Research, 197(2), 620-631.
Yan, B., Wu, X.-H., Ye, B., & Zhang, Y.-W. (2017). Three-level supply chain coordination of fresh agricultural products in the Internet of Things. Industrial Management & Data Systems, 117(9), 1842-1865. https://doi.org/10.1108/IMDS-06-2016-0245
Yang, C.-T., Ouyang, L.-Y., & Wu, H.-H. (2009). Retailer's optimal pricing and ordering policies for non-instantaneous deteriorating items with price-dependent demand and partial backlogging. Mathematical Problems in Engineering, 2009.
Yang, H.-L., Teng, J.-T., & Chern, M.-S. (2010). An inventory model under inflation for deteriorating items with stock-dependent consumption rate and partial backlogging shortages. International Journal of Production Economics, 123(1), 8-19.
Yang, Y., Chi, H., Zhou, W., Fan, T., & Piramuthu, S. (2020). Deterioration control decision support for perishable inventory management. Decision Support Systems, 134, 113308. https://doi.org/https://doi.org/10.1016/j.dss.2020.113308
Zhang, J., Wang, Y., Lu, L., & Tang, W. (2015). Optimal dynamic pricing and replenishment cycle for non-instantaneous deterioration items with inventory-level-dependent demand. International Journal of Production Economics, 170, 136-145.
中文文獻
天下雜誌. (2011). 傳統市場也有春天. https://www.cw.com.tw/article/5011221
天下雜誌. (2021). 收一單賠一單、外送給Uber Eats賺 全聯堅持做生鮮電商,目的是什麼?. https://www.cw.com.tw/article/5117700?template=transformers&from=search
天下雜誌. (2022). 全聯拿下大潤發,統一出手吃家樂福!台灣零售爭霸戰全解析. https://www.cw.com.tw/article/5122054
勤業眾信會計師事務所. (2022). 2022零售力量與趨勢展望. https://www2.deloitte.com/tw/tc/pages/about-deloitte/articles/pr20220308-cnsr.html
經濟部統計處. (2022). 網購市場順勢躍升新高,成長率優於整體零售業. https://www.moea.gov.tw/Mns/dos/bulletin/Bulletin.aspx?kind=9&html=1&menu_id=18808&bull_id=9673
農委會國際處. (2021). 新冠肺炎疫情嚴峻 農委會與電商、超市及外送業者攜手擴大國產農產食品供應. https://www.coa.gov.tw/theme_data.php?theme=news&sub_theme=agri&id=8399
數位時代. (2022). 統一營收規模上看2千億!全聯、好市多緊追在後,零售英雄榜一次看. https://www.mirai.com.tw/2021-taiwan-retail-amd-ecommerce-companies-market-share-structure/