簡易檢索 / 詳目顯示

研究生: 陳拓丞
Chen, Tuo-Cheng
論文名稱: 應用因次分析法於奈米壓痕試驗之理論分析與數值模擬:殘留應力、基材效應與黏彈性質之研究
Dimensional Analysis Approach for Theoretical Analysis and Numerical Simulation in Nanoindentation Test:Residual Stress, Substrate Effects, and Viscoelastic Properties
指導教授: 陳國聲
Chen, Kuo-Shen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 122
中文關鍵詞: 殘留應力有限元素法潛變與應力鬆弛特性壓痕裂縫基材效應奈米壓痕試驗因次分析法
外文關鍵詞: indentation cracking, creep, substrate effect, stress relaxation, residual stress, finite element analysis, nanoindentation, dimensional analysis
相關次數: 點閱:156下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   近年來許多微奈米薄膜和微機電系統所使用之金屬與介電薄膜以及相關材料等,在微結構之應用領域展現日漸重要的趨勢。然而,這些材料之機械性質與表面物理特性必須要能夠被精確地定義,否則這些高品質材料在應用上便大受限制。奈米壓痕試驗為目前量測奈米表面機械性質的檢測技術之一,其優點為試片不需特別製作,以及量測方法之均一性與簡易性,同時具有量測及掃描表面形貌的功能。然而,此方法的基本實驗資料僅提供了施力與壓痕深度關係,至於如何將這些量測之物理量轉移成機械性質,仍必須仰賴精確的力學模擬。本文以Cheng與Cheng所提之因次分析法為基礎,此方法幫助我們簡化系統之控制變數的數量,同時減少理論推導與實驗進行之複雜度,以更簡單、容易的技巧發展與建立該系統之物理模型。接著利用有限元素法模擬進行軟體實驗,明確地找出各參數與實驗結果間之相依性。根據此分析流程,我們成功地擴展了奈米壓痕技術的應用範圍,分別為殘留應力、潛變與應力鬆弛特性三個力學轉換模型。除了楊氏係數和硬度,我們還可以由奈米壓痕試驗量測材料之殘留應力以及應力指數與潛變活化能。對於黏彈性質較單純的材料,我們同樣也可以由壓痕試驗得到材料之鬆弛時間。此外,由基材效應的研究結果,我們發現一般常用之經驗法則可獲得較保守的材料性質。在壓痕裂縫方面則提供一個簡易評估材料破壞程度的方法,得知裂縫成長之相關重要因素。

     Nanoindentation test is one of the most popular techniques to measure the mechanical properties of the micro- or nano-structures such as the metal or dielectric thin films. This material test scheme is very simple, and it even does not require special processing for specimens. However, the experimental data can only provide the relationship between applied load and penetration depth, and we must transfer those physical quantities to the mechanical properties by appropriate mechanics, in which Oliver and Pharr’s models are considered. However their models are highly ideal and there are still a lot of parameters affecting the experimental results such as residual stress, substrate effect, and indentation cracking. In this thesis, dimensional analyses are firstly used to find the governing parameters and to obtain scaling relationships via subsequent finite element analysis. By such a forward analysis procedure, we have developed three models to convert test data into desired material properties for nanoindentation tests including the effect of residual stress and the viscoelastic properties of creep and stress relaxation, respectively. Those models provide useful tools for extracting specific material properties, such as residual stress, creep exponent and stress relaxation time constant. Finally, the investigation of substrate effect has shown that the traditional rule of thumb in determining the suitable test regime is restricted in the soft film/hard substrate system, and significant error was observed for hard film/soft substrate system. In parallel, the factors of indentation crack growing have also been realized by a simple case study including the loads, crack types, and the fracture toughness. In summary, by integrating the models proposed by this thesis and data from standard tests, it is not only possible to obtain the Young’s modulus and hardness but also the viscoelastic properties or the residual stress for a specific material through nanoindentation characterization. Thus increase the applicability of nanoindentation.

    中文摘要……………………………………………I Abstract……………………………………………II 誌謝…………………………………………………III 目錄…………………………………………………IV 圖目錄………………………………………………VIII 表目錄………………………………………………XII 符號說明……………………………………………XIII 第一章 緒論 1.1 前言…………………………………………1 1.2 文獻回顧……………………………………3 1.3 研究動機……………………………………5 1.4 本文架構……………………………………6 第二章 奈米壓痕材料性質檢測技術 2.1 材料之硬度與楊氏係數的量測……………8 2.2 影響奈米壓痕試驗之因素…………………12 2.2.1 量測儀器之柔性………………………13 2.2.2 壓痕器之幾何形狀……………………14 2.2.3 Pile-up與Sink-in……………………16 2.2.4 殘留應力………………………………18 2.2.5 其他的影響因素………………………19 2.3 本章結論……………………………………20 第三章 奈米壓痕試驗與模擬之基本理論 3.1 接觸力學……………………………………22 3.1.1 彈性接觸分析…………………………22 3.1.2 彈塑性接觸分析………………………29 3.2 因次分析法…………………………………31 3.2.1 物理量與其單位和因次之關係………32 3.2.2 無因次參數之轉換……………………34 3.2.3 結論……………………………………37 3.3 有限元素分析法……………………………38 3.4 本章結論……………………………………40 第四章 薄膜殘留應力與基材效應之模擬 4.1 簡介…………………………………………41 4.2 因次分析法之應用…………………………44 4.2.1 殘留應力………………………………44 4.2.2 基材效應………………………………48 4.3 有限元素分析………………………………49 4.3.1 壓痕器幾何的簡化……………………49 4.3.2 有限元素模型建立……………………50 4.4 結果與討論…………………………………53 4.4.1 F/Eh 與Y/E比例關係驗證……………53 4.4.2 殘留應力………………………………56 4.4.3 基材效應………………………………60 4.5 結論…………………………………………63 第五章 奈米壓痕潛變試驗之模擬 5.1 簡介…………………………………………64 5.2 因次分析法之應用…………………………67 5.3 有限元素分析………………………………70 5.4 結果與討論…………………………………72 5.4.1 單軸拉伸潛變試驗有限元素模型驗證…72 5.4.2 奈米壓痕潛變試驗各Pi函數之關係……76 5.4.3 與Fujiwara's模型之比較與驗證………83 5.5 結論……………………………………………88 第六章 奈米壓痕應力鬆弛試驗之模擬 6.1 簡介……………………………………………90 6.2 因次分析法之應用……………………………91 6.3 有限元素分析…………………………………93 6.4 結果與討論……………………………………96 6.4.1 應力鬆弛有限元素模型之驗證…………96 6.4.2 奈米壓痕應力鬆弛試驗Pi函數之分析…98 6.4.3 Multi-mode應力鬆弛模型………………100 6.4.4 結論………………………………………101 6.5 本章結論………………………………………103 第七章 奈米壓痕裂縫問題之研究 7.1 前言……………………………………………104 7.2 壓痕裂縫的類型………………………………106 7.3 裂縫損耗能量分析……………………………107 7.4 有限元素分析…………………………………109 7.5 結果與討論……………………………………110 7.4 結論……………………………………………111 第八章 結論與未來展望 8.1 本文歸納………………………………………112 8.2 結論……………………………………………114 8.3 本文貢獻………………………………………115 參考文獻 ………………………………………………117

    [1] E. Maillard-Schaller, O. M. Kuettel, L. Diederich, L. Schlapbach, V. V. Zhirnov, and P.I. Belobrov, “Surface properties of nanodiamond films deposited by electrophoresis on Si(100),” Diamond Relat. Mater., Vol.8, pp.805-808, 1999.
    [2] I. B. Yanchuk, M. Ya. Valakh, A. Ya. Vul’, V. G. Golubev, S. A. Grudinkin, N. A. Feoktistov, A. Richter, and B. Wolf “Raman scattering, AFM and nanoindentation characterisation of diamond films obtained by hot filament CVD” Diamond Relat. Mater., Vol.13, pp.266-269, 2004.
    [3] S. C. Trippe, R. D. Mansano, F. M. Costa, and R. F. Silva, “Mechanical properties evaluation of fluor-doped diamond-like carbon coatings by nanoindentation,” Thin Solid Films, Vol.446, pp. 85-90, 2004.
    [4] 魏伯任,奈米壓痕實驗應用於塊材、覆膜材料機械性質以及硬脆材料黏彈性質量測-理論分析與實驗印證,國立成功大學機械工程研究所博士論文,民國94年。
    [5] W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res., Vol.7, No.6, pp.1564-1583, 1992.
    [6] M. Dao, N. Chollacoop, K. J. Van Vliet, T. A. Venkatesh, and S. Suresh, ”Computational modeling of the forward and reverse problems in instrumented sharp indentation,” Acta Mater., Vol.49, pp. 3899-3918, 2001.
    [7] Y. T. Cheng and C. M. Cheng, “Scaling approach to conical indentation in elastic-plastic solids with work hardening,” J. Appl. Phys., Vol.84, No.3, pp. 1284-1291, 1998.
    [8] T. Y. Tsui, W. C. Oliver, and G. M. Pharr, “Influence of stress on the measurement of mechanical properties using:PartⅠ. Experimental studies in an aluminum alloy,” J. Mater. Res., Vol.11, No.3, pp.752-759, 1996.
    [9] M. M. Chaundri and M. A. Phillips, Phil. Mag. A62, pp. 1-27, 1990.
    [10] 徐昌駿,奈米壓痕系統於微懸臂樑彎矩測試之研究,國立清華大學動力機械工程學系碩士論文,民國93年。
    [11] A. K. Bhattacharya and W. D. Nix, “Analysis of elastic and plastic deformation associated with indentation testing of thin films on substrates,” Int. J. Solids Struct., Vol.24, No.12, pp. 1287-1298, 1988.
    [12] R. Saha and W. D. Nix, “Effects of the substrate on the determination of thin film mechanical properties by nanoindentation,” Acta Mater., Vol.50, pp. 23-38, 2002.
    [13] M. Fujiwara and M. Otsuka, “Indentation creep of -Sn and Sn-Pb eutectic alloy,” Mater. Sci. Eng. A, Vol.319-321, pp. 929-933, 2001.
    [14] X. Li and B. Bhushan, “Continuous stiffness measurement and creep behavior of composite magnetic tapes,” Thin Solid Films, Vol.377-378, pp. 401-406, 2000.
    [15] B. W. Mott, “Micro-indentation Hardness Testing,” Butterworths, London, 1956.
    [16] Y. T. Cheng and C. M. Cheng, “Scaling, dimensional analysis, and indentation measurement,” Materials Science and Engineering R, Vol.44, pp. 91-149, 2004.
    [17] Y. T. Cheng and C. M. Cheng, “Further analysis of indentation loading curves: Effects of tip rounding on mechanical property measurements,” J. Mater. Res., Vol.13, No.4, pp. 3493-3496, 1998.
    [18] Y. T. Cheng and C. M. Cheng, “Relationships between hardness, elastic modulus, and the work of indentation,” Appl. Phys. Lett., Vol.73, No.5, pp. 614-616, 1998.
    [19] Y. T. Cheng and C. M. Cheng, “Can stress-strain relationships be obtained from indentation curves using conical and pyramidal indenters?,” J. Mater. Res., Vol.14, No.9, pp. 3493-3496, 1999.
    [20] Y. T. Cheng and C. M. Cheng, “Scaling relationships in conical indentation of elastic-perfectly plastic solids,” Int. J. Solids Struct., Vol.36, pp. 1231-1243, 1999.
    [21] Y. T. Cheng and C. M. Cheng, “What is indentation hardness?,” Surf. Coat. Technol., Vol.133-134, pp. 417-424, 2000.
    [22] N. Chollacoop, M. Dao, and S. Suresh, “Depth-sensing instrument indentation with dual sharp indenters,” Acta Materialia, Vol.51, pp. 3713-3729, 2003.
    [23] S. Suresh and A. E. Giannakopoulos, “A new method for estimating residual stresses by instrumented sharp indentation,” Acta Mater., Vol.46, No.16, pp. 5755-5767, 1998.
    [24] E. W. Andrews, A. E. Giannakopoulos, E. Plisson, and S. Suresh, “Analysis of the impact of a sharp indenter,” Int. J. Solids Struct., Vol.39, pp. 281-295, 2002.
    [25] T. A. Laursen and J. C. Simo, “A study of the mechanics of microindentation using finite elements,” J. Mater. Res., Vol.7, No.3, pp. 618-626, 1992.
    [26] J. A. Knapp, D. M. Follstaedt, S. M. Myers, J. C. Barbour, and T. A. Friedmann, ”Finite-element modeling of nanoindentation,” J. Appl. Phys., Vol.85, No.3, pp. 1460-1474, 1999.
    [27] N. Chollacoop, M. Dao, and S. Suresh, “Depth-sensing instrument indentation with dual sharp indenters,” Acta Materialia, Vol.51, pp. 3713-3729, 2003.
    [28] Takeshi Sawa, Yasushi Akiyama, Atsushi Shimamoto, and Kohichi Tanaka, ”Nanoindentation of a 10 nm thick thin film,” J. Mater. Res., Vol.14, No.6, pp. 2228-2232, 1999.
    [29] C. F. Roberston and M. C. Fivel, “A study of the submicron indent-induced plastic deformation,” J. Mater. Res., Vol.14, No.6, pp. 2251-2258, 1999.
    [30] A. C. Fischer-Cripps, “Simulation of sub-micron indentation tests with spherical and Berkovich indenters,” J. Mater. Res., Vol.16, No.7, pp. 2149-2157, 2001.
    [31] 陳冠維,掃描式探針顯微鏡摩擦力檢測應用於不鏽鋼氮離子佈值技術之建立及材料微/奈米機械性質檢測,國立成功大學機械工程系碩士論文,民國92年。
    [32] G. M. Pharr, W. C. Oliver, and F. R. Brotzen, “On the generality of the relationship among contact stiffness, contact area, and the elastic modulus during indentation,” J. Mater. Res., Vol.7, No.3, pp.613-617, 1992.
    [33] R. B. King, “Elastic analysis of some punch problems for a layered medium,” Int. J. Solids Struct., Vol.23, No.12, pp.1657-1664, 1987.
    [34] J. L. Hay, W. C. Oliver, A. Bolshakov, and G. M. Pharr, “Using the ratio of loading slope and elastic stiffness to predict pile-up and constraint factor during indentation,” Mat. Res. Proc. Symp., 522, pp.101-106, 1998.
    [35] K. W. McElhaney, J. J. Vlassak, and W. D. Nix, “Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments,” J. Mater. Res., Vol.13, No.5, pp.1300-1306, 1998.
    [36] A. Bolshakov, W. C. Oliver, and G. M. Pharr, “Influence of stress on the measurement of mechanical properties using:PartⅡ. Finite element simulations,” J. Mater. Res., Vol.11, No.3, pp.760-768, 1996.
    [37] W. D. Nix, “Elastic and plastic properties of thin films on substrates:nanoindentation techniques,” Mat. Sci. and Eng. A, Vol.234-236, pp.37-44, 1997.
    [38] P. M. Sargent and M. F. Ashby, “Indentation creep,” Mat. Sci. and Tech., Vol.8, pp.594-601, 1992.
    [39] Anthony C. Fischer-Cripps, “Nanoindentation,” Spring-Verlag New York, Inc., 2002.
    [40] D. A. Hills, D. Nowell, and A. Sackfield, “Mechanics of Elastic Contacts,” Butterworth-Heinemann Ltd, 1993.
    [41] G. I. Barenblatt, “Scaling, Self-similarity, and Intermediate Asymptotics,” Cambridge University Press, Cambridge, 1996.
    [42] B. R. Munson, D. F. Young, and T. H. Okiishi, “Fundamentals of Fluid Mechanics,” John Wiley & Sons, Inc., 1998.
    [43] E. Buckingham, “On physically similar systems: Illustrations of the use of dimensional equations,” Phys. Rev., Vol.4, pp. 345-376, 1914.
    [44] C. M. Focken, “Dimensional Methods and Their Applications,” Arnold, 1953.
    [45] L. I. Sedov, “Similarity and Dimensional Analysis in Mechanics,” CRC Press, 1993.
    [46] T. Szirtes and P. Rozsa, “Applied Dimensional Analysis and Modeling,” McGraw Hill, 1998.
    [47] M. Ohring, The Materials Science of Thin Film, Academic Press, New York, 1992.
    [48] G. G. Stoney, “The Tension of Thin Metallic Films Deposited by Electroysis ”, Proc. R. Soc. Lond. A82(1909)172.
    [49] T. H. Courtney, “Mechanical Behavior of Materials,” McGraw-Hill, New York, 1990.
    [50] F. Wilhelm, “Viscoelasticity,” Springer-verlag, New York, 1975
    [51] 許瑞峰,微小材料機械特性測試系統之設計製作與其在電子封裝與高分子材料上之應用,國立成功大學機械工程系碩士論文,民國92年。
    [52] M. J. Mayo and W. D. Nix, “A micro-indentation study of superelasticity in Pb, Sn, and Sn-38 wt% Pb,” Acta Metal., Vol.36, pp. 2183-2192, 1988.
    [53] W. B. Li and R. Warren, “A model for nano-indentation creep,” Acta Metall. Mater., Vol.41, No.10, pp. 3065-3096, 1993.
    [54] X. Li and B. Bhushan, “Continuous stiffness measurement and creep behavior of composite magnetic tapes,” Thin Solid Films, Vol.377-378, pp. 401-406, 2000.
    [55] G. Feng and A. H. W. Ngan, “Creep and strain burst in indium and alumin ium during nanoindentation,” Scripta Mater., Vol.45, pp. 971-976, 2001.
    [56] Y. T. Cheng and C. M. Cheng, “Scaling relationships in indentation of power-law creep solids using self-similar indenters,” Phil. Mag. Lett., Vol.81, No.1, pp. 9-16, 2001.
    [57] ABAQUS Theory Manual, Version 6.3, Hibbit, Karlsson & Sorensen, Inc.
    [58] M. Nastasi, D. M. Parkin, and H. Gleiter, “Mechanical properties and deformation behavior of materials having ultra-fine microstructures,” pp. 449-461, Kluwer Academic Publishers, 1993.
    [59] D. S. Harding, W. C. Oliver, and G. M. Pharr, “Cracking during nanoindentation and its use in the measurement of fracture toughness,” Mat. Res. Soc. Symp. Proc., Vol.356, pp. 663-668, 1995.
    [60] A. A. Volinsky, J. B. Vella, and W. W. Gerberich, “Fracture toughness, adhesion and mechanical properties of low-K dielectric thin films measured by nanoindentation,” Thin Solid Films, Vol.429, pp. 201-210, 2003.
    [61] E. E. Gdoutos, “Fracture Mechanics An Introduction,” Kluwer Academic Publishers, 1993.

    下載圖示 校內:立即公開
    校外:2005-07-26公開
    QR CODE