| 研究生: |
戴翊茜 Tai, I-Chien |
|---|---|
| 論文名稱: |
自動化機器人噴漆流程的設計與實施 Design and Implementation of a Fully Automated Robot Spray-Painting Process |
| 指導教授: |
馮重偉
Feng, Chung-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 全自動化 、建築資訊模型 、機器人系統 、混合實境技術 |
| 外文關鍵詞: | full automation, Building Information Modeling, robotic systems, Mixed Reality technology |
| 相關次數: | 點閱:51 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著全球勞動力短缺的加劇,尤其是在建築業中,台灣也面臨同樣的挑戰。少子化和人口老化導致勞動力供應減少,特別是在現場體力工和操作員方面更為明顯。即使管理職位人數有所增加,但現場實際操作人員的不足仍未解決,嚴重影響了施工效率和質量。同時,機器人技術的快速發展為解決這一問題提供了新的途徑,促使自動化和智能化技術在建築領域中的應用成為可能。
為解決這一問題,本研究提出了一個自動化噴漆系統,結合機械手臂和移動平台,以提高建築工地的自動化水平。透過引入建築資訊模型(BIM)和數位雙生技術,即使在缺乏現場真實地圖情況下,也能夠預先規劃和準備工作,大幅簡化了前期準備工作,提升了整體效率。該系統通過精確的定位和導航,提高了施工質量和效率,減少了對人力的依賴。此外,本研究透過混合實境技術(MR)作為初始流程的輔助使用工具,以進一步優化流程設定,提升操作的精確性。
該系統在移動及噴塗路徑上達到了預期目標,透過機器人操作系統(ROS)的高效應用,實現了自走車與機械手臂之間的高效串接與協同作業,展示了自動化技術在解決建築行業現場操作問題中的潛力,並且能夠達到解決勞動力短缺和提高施工效率的目標。在工地環境中,系統具備高度的自適應能力,能夠在複雜多變的環境中靈活操作,滿足多樣化的作業需求。以噴漆工程為例,自動化流程的實施不僅提升了作業效率,更確保了現場作業的安全性。本研究的成果顯示,透過技術整合與創新應用,可以有效解決噴漆重複性高作業,提高施工質量和效率,推動營建行業向無人智慧化方向邁進,為未來的建築工程帶來更多的可能性。
With the intensification of the global labor shortage, particularly in the construction industry, Taiwan faces similar challenges. The declining birth rate and aging population have led to a reduced labor supply, especially among manual workers and operators. Although the number of managerial positions has increased, the shortage of on-site workers remains unresolved, severely impacting construction efficiency and quality. Simultaneously, the rapid advancement of robotics technology offers new solutions to these problems, promoting the application of automation and intelligent technologies in the construction sector.
To address this issue, this study proposes an automated painting system that integrates robotic arms and mobile platforms to enhance the automation level of construction sites. By incorporating Building Information Modeling (BIM) and digital twin technologies, even in the absence of accurate site maps, the system can plan and prepare tasks in advance, significantly simplifying preliminary work and improving overall efficiency. The system achieves precise positioning and navigation, enhancing construction quality and efficiency while reducing reliance on manual labor. Additionally, this study utilizes Mixed Reality (MR) technology as an auxiliary tool in the initial process setup to further optimize the process and enhance operational accuracy.
The system has achieved the expected goals in terms of movement and painting paths. Through the efficient application of the Robot Operating System (ROS), it realizes seamless integration and coordinated operation between the mobile platform and the robotic arm, demonstrating the potential of automation technology in addressing on-site operational challenges in the construction industry. The system exhibits a high degree of adaptability, capable of flexible operation in complex and variable environments to meet diverse operational needs. For instance, in painting tasks, the implementation of automated processes not only improves operational efficiency but also ensures the safety of on-site operations. The results of this study indicate that through technological integration and innovative applications, it is possible to effectively solve the repetitive and high-labor tasks in painting, enhance construction quality and efficiency, and advance the construction industry towards intelligent automation, bringing more possibilities for future construction projects.
[1] Shen, Qiyu, Wu, Songfei, Deng, Yichuan, Deng, Hui, & Cheng, Jack C. P. (2022). BIM-Based Dynamic Construction Safety Rule Checking Using Ontology and Natural Language Processing. Buildings, 12(5), 564. https://doi.org/10.3390/buildings12050564
[2] Zhao, Xinge, & Cheah, Chien Chern. (2023). BIM-based indoor mobile robot initialization for construction automation using object detection. Automation in Construction, 146, 104647. https://doi.org/10.1016/j.autcon.2022.104647
[3] Zhang, X., Arayici, Y., Wu, S., Abbott, C., & Aouad, G. (2009). Integrating BIM and GIS for large scale (building) asset management: a critical review. In Proceedings of CC2009. University of Salford. Retrieved from https://www.researchgate.net/publication/267954378
[4] Juwon Kim, Seokhwan Jeong, Hogyun Kim, & Younggun Cho. (2024). DiTer++: Diverse Terrain and Multi-modal Dataset for Multi-Robot Navigation in Multi-session Outdoor Environments. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2024). IEEE. https:/sites.google.com/view/diter-plusplus/
[5] Juwon Kim, Seokhwan Jeong, Hogyun Kim, & Younggun Cho. (2024). DiTer++: Diverse Terrain and Multi-modal Dataset for Multi-Robot Navigation in Multi-session Outdoor Environments. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2024). IEEE. https://sites.google.com/view/diter-plusplus/
[6] Pok Yin Victor Leung, Yijiang Huang, Caelan Garret, Fabio Gramazio, & Matthias Kohler. (2024, May). Planning Non-repetitive Robotic Assembly Processes with Task and Motion Planning (TAMP). Paper presented at the Rob|Arch 2024, Zurich, Switzerland.
[7] Houtan Jebelli, Mahmoud Habibnezhad, Shayan Shayesteh, Somayeh Asadi, & SangHyun Lee (Eds.). (2022). Automation and Robotics in the Architecture, Engineering, and Construction Industry. Springer. https://doi.org/10.1007/978-3-030-77163-8
[8] Dvij Kalaria, Shreya Sharma, Sarthak Bhagat, Haoru Xue, & John M. Dolan. (2024). WROOM: An Autonomous Driving Approach for Off-Road Navigation. arXiv preprint arXiv:2404.08855. https://doi.org/10.48550/arXiv.2404.08855
[9] Melenbrink, Nathan, Werfel, Justin, & Menges, Achim. (2020). On-site autonomous construction robots: Towards unsupervised building. Automation in Construction, 119, 103312. https://doi.org/10.1016/j.autcon.2020.103312
[10] Xinge Zhao, & Chien Chern Cheah. (2023). BIM-based indoor mobile robot initialization for construction automation using object detection. Automation in Construction, 146, 104647. https://doi.org/10.1016/j.autcon.2022.104647
[11] Lingdong Zeng, Shuai Guo, Jing Wu, & Bernd Markert. (2024). Autonomous Mobile Construction Robots in Built Environment: A Comprehensive Review. Developments in the Built Environment, 19, 100484. https://doi.org/10.1016/j.dibe.2024.100484
[12] Akshay Ingole. (2023). Automated Guided Vehicles with Robotic Arm: Enhancing Efficiency and Flexibility in Material Handling. International Journal of Science and Research (IJSR), 12(6), 2343-2345. https://doi.org/10.21275/SR23526161208
[13] Stephen D. Wolthusen, Alok Porwal, Andreas Bertsch, Roberto Pieri, Marcello Brambilla, Christian Mayer, & John Doe. (2024). Artificial Intelligence in Civil Infrastructure Health. In Proceedings of the International Conference on Civil Infrastructure Health (ICCIH 2024), Paris, France.
[14] Pok Yin Victor Leung, Yijiang Huang, Caelan Garret, Fabio Gramazio, & Matthias Kohler. (2024, May). Planning Non-repetitive Robotic Assembly Processes with Task and Motion Planning (TAMP). Paper presented at the Rob|Arch 2024, Zurich, Switzerland.
[15] Houtan Jebelli, Mahmoud Habibnezhad, Shayan Shayesteh, Somayeh Asadi, & SangHyun Lee (Eds.). (2022). Automation and Robotics in the Architecture, Engineering, and Construction Industry. Springer. https://doi.org/10.1007/978-3-030-77163-8
[16] Mohamed Sorour. (2024). RoboPainter - A Detailed Robot Design for Interior Wall Painting. Paper presented at the IEEE International Conference on Robotics and Automation (ICRA 2024), Paris, France.
[17] Zhang, Ming, Xu, Rui, Wu, Haitao, Pan, Jia, & Luo, Xiaowei. (2023). Human–robot collaboration for on-site construction. Automation in Construction, 144, 104339. https://doi.org/10.1016/j.autcon.2022.104339
[18] Zhang, Jianqi, Yang, Xu, & Wang, Wei. (2023). Automated guided vehicles and autonomous mobile robots for recognition and tracking in civil engineering. Automation in Construction, 1 Agile, 104347. https://doi.org/10.1016/j.autcon.2022.104347
[19] Quaglia, Giuseppe, Visconte, Carmen, & Scimmi, Leonardo Sabatino. (2020). Agri_q: Agriculture UGV for Monitoring and Drone Landing. Robotics and Autonomous Systems, 131, 103577. https://doi.org/10.1016/j.robot.2020.103577
[1] 李宜蓁,“以虛實整合為基礎建構營建工程之人機協作系統—以噴漆作業為例”,碩士論文,國立成功大學土木工程學研究所,台南市,2023.
[2] 黃柏瑜,“利用虛實整合及人機協作建構全自動化營建機器人之雛型系統—以噴漆施工作業之移動行為為例”,碩士論文,國立成功大學土木工程學研究所,台南市,2023.
[3] 蕭苡烜,“結合建築資訊模型及混合實境建構室內油漆工程之人機協作系統”,碩士論文,國立成功大學土木工程學研究所,台南市,2022