| 研究生: |
張致揚 Chang, Chih-Yang |
|---|---|
| 論文名稱: |
Graphene Nanoribbon Array與Photonics Crystal Slab耦合之研究 Research on the coupling of Graphene Nanoribbon Array and Photonics Crystal Slab |
| 指導教授: |
劉瑞農
Liu, Jui-Nung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 32 |
| 中文關鍵詞: | 奈米天線 、奈米共振腔 、石墨烯 、photonics crystal slab (PCS) 、photonics crystal guided resonance (PCGR) 、graphene nano-ribbon (GNR) |
| 外文關鍵詞: | graphene, graphene nanoribbon, photonics crystal slab, photonics crystal guided resonance |
| 相關次數: | 點閱:132 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文將探討光學奈米天線與介電質奈米共振腔結合的混合光學結構。我們採用原子層薄、具有極高電磁場增強能力graphene nano-ribbon (GNR)作為奈米天線。另一方面,我們採用高品質因數的高介電係數的photonics crystal slab作為奈米共振腔。針對此混合奈米光學結構進行數值模擬,我們發現此混合結構的兩個元素彼此耦合,展現了photonics crystal guided resonance (PCGR)效應,並將GNR近場強度大幅增強或是抑制。
We numerically study resonant coupling between the graphene nanoribbon (GNR) and high-index photonic crystal slab (PCS).
Key words: graphene, graphene nanoribbon, photonics crystal slab, photonics crystal guided resonance
1. Bharadwaj, P., B. Deutsch, and L. Novotny, Optical Antennas. Advances in Optics and Photonics, 2009. 1(3).
2. Mühlschlegel, P., et al., Resonant Optical Antennas. Science, 2005. 308(5728): p. 1607-1609.
3. Vahala, K.J., Optical microcavities. Nature, 2003. 424(6950): p. 839-846.
4. García de Abajo, F.J., Graphene Plasmonics: Challenges and Opportunities. ACS Photonics, 2014. 1(3): p. 135-152.
5. Grigorenko, A.N., M. Polini, and K.S. Novoselov, Graphene plasmonics. Nature Photonics, 2012. 6(11): p. 749-758.
6. Koppens, F.H., D.E. Chang, and F.J. Garcia de Abajo, Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett, 2011. 11(8): p. 3370-7.
7. Ni, G.X., et al., Fundamental limits to graphene plasmonics. Nature, 2018. 557(7706): p. 530-533.
8. Jablan, M., H. Buljan, and M. Soljačić, Plasmonics in graphene at infrared frequencies. Physical Review B, 2009. 80(24).
9. Luo, X., et al., Plasmons in graphene: Recent progress and applications. Materials Science and Engineering: R: Reports, 2013. 74(11): p. 351-376.
10. Gan, C.H., H.S. Chu, and E.P. Li, Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies. Physical Review B, 2012. 85(12).
11. Joannopoulos, J.D., et al., Photonic Crystals: Molding the Flow of Light - Second Edition. 2011: Princeton University Press.
12. Fan, S. and J.D. Joannopoulos, Analysis of guided resonances in photonic crystal slabs. Physical Review B, 2002. 65(23).
13. Rana, F., Graphene Terahertz Plasmon Oscillators. IEEE Transactions on Nanotechnology, 2008. 7(1): p. 91-99.
14. Vakil, A. and N. Engheta, Transformation Optics Using Graphene. Science, 2011. 332(6035): p. 1291-1294.
15. Shi, S.F., et al., Plasmon resonance in individual nanogap electrodes studied using graphene nanoconstrictions as photodetectors. Nano Lett, 2011. 11(4): p. 1814-8.
16. Christensen, J., et al., Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons. ACS Nano, 2012. 6(1): p. 431-440.
17. Yao, Y., et al., Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett, 2014. 14(11): p. 6526-32.
18. Gao, W., et al., Excitation of Plasmonic Waves in Graphene by Guided-Mode Resonances. ACS Nano, 2012. 6(9): p. 7806-7813.
19. Liu, J.N., et al., Sculpting narrowband Fano resonances inherent in the large-area mid-infrared photonic crystal microresonators for spectroscopic imaging. Opt Express, 2014. 22(15): p. 18142-58.
20. Novotny, L. and N. van Hulst, Antennas for light. Nature Photonics, 2011. 5(2): p. 83-90.
21. Liu, J.N., et al., Nanoantenna-Microcavity Hybrids with Highly Cooperative Plasmonic-Photonic Coupling. Nano Lett, 2017. 17(12): p. 7569-7577.
22. Giannini, V., et al., Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem Rev, 2011. 111(6): p. 3888-912.
23. Mayer, K.M. and J.H. Hafner, Localized surface plasmon resonance sensors. Chem Rev, 2011. 111(6): p. 3828-57.
24. Li, J., et al., Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array. Nat Commun, 2013. 4: p. 2651.
25. Alù, A. and N. Engheta, Tuning the scattering response of optical nanoantennas with nanocircuit loads. Nature Photonics, 2008. 2(5): p. 307-310.
26. Luk'yanchuk, B., et al., The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater, 2010. 9(9): p. 707-15.
27. Hao, F., et al., Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance. Nano Letters, 2008. 8(11): p. 3983-3988.
28. Zhu, W., et al., Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat Commun, 2016. 7: p. 11495.
29. Ciracì, C., et al., Probing the Ultimate Limits of Plasmonic Enhancement. Science, 2012. 337(6098): p. 1072-1074.
30. Novoselov, K.S., et al., Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306(5696): p. 666-669.
31. Ju, L., et al., Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol, 2011. 6(10): p. 630-4.
32. Khitrova, G., et al., Vacuum Rabi splitting in semiconductors. Nature Physics, 2006. 2(2): p. 81-90.
33. Christ, A., et al., Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. Phys Rev Lett, 2003. 91(18): p. 183901.
34. Schmidt, M.A., et al., Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability. Nat Commun, 2012. 3: p. 1108.
35. Chanda, D., et al., Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals. Nat Commun, 2011. 2: p. 479.
36. Barth, M., et al., Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling. Nano Lett, 2010. 10(3): p. 891-5.
37. Graphene surface conductivity material model (Lumerical FDTD Support). Available from: https://support.lumerical.com/hc/en-us/articles/360042244874-Graphene-modeling-methodology.
38. Falkovsky, L.A., Optical properties of graphene. Journal of Physics: Conference Series, 2008. 129.
39. Li, H., L. Wang, and X. Zhai, Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber. Sci Rep, 2016. 6: p. 36651.