簡易檢索 / 詳目顯示

研究生: 張乃仁
Chang, Nai-Jen
論文名稱: 製備聚乳酸/甘醇酸海綿支架結合明膠與透明質酸於工程軟骨
Fabricating PLGA Sponge Scaffold Integrated with Gelatin/Hyaluronic Acid for Engineering Cartilage
指導教授: 葉明龍
Yeh, Ming-Long
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 101
中文關鍵詞: 聚乳酸/甘醇酸透明質酸軟骨組織工程明膠
外文關鍵詞: gelatin, hyaluronic acid, PLGA, cartilage tissue engineering
相關次數: 點閱:219下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 背景與目的: 關節軟骨在受傷後自我修復能力差。目前,在臨床上已有許多治療方法,然而,仍存有併發症,例如:生成纖維軟骨、不穩定性、植入物失敗等。組織工程,包含細胞、細胞支架、環境讓細胞生長,提供一個較新的方法去修復損傷的軟骨。迄今,生醫細胞、支架材料、培養環境仍沒有最好的配對,這仍然是當今組織工程與再生醫學熱門的研究領域。本研究目的是製備聚乳酸/甘醇酸海綿支架與聚乳酸/甘醇酸-明膠與透明質酸複合式支架提供未來軟骨軟骨組織工程之應用。

    材料與方法: 製備聚乳酸/甘醇酸海綿支架使用鹽析法。聚乳酸/甘醇酸-明膠與透明質酸支架經由EDAC交聯劑修飾支架表面。聚乳酸/甘醇酸支架與聚乳酸/甘醇酸-明膠與透明質酸支架分別評估其結構、成份元素分析、吸水量、力學測量以及體外降解測試。從豬關節萃取得初代軟骨細胞用來評估在細胞支架之生物相容性。我們評估細胞貼附率、細胞形態、細胞外基質合成量以及細胞增生。

    結果與討論: 由鹽析法製備的聚乳酸/甘醇酸支架,其孔洞大小被控制在我們想要的300~500μm與90%以上孔洞率。聚乳酸/甘醇酸-明膠與透明質酸支架在電子顯微鏡觀測下有較平滑的表面。藉由成份元素分析顯示氮元素存在於細胞支架上,證明交聯劑能有效交聯明膠與透明質酸在聚乳酸/甘醇酸支架上。因為親水性關係,吸水量在早期聚乳酸/甘醇酸-明膠與透明質酸支架顯著性地的兩倍高於聚乳酸/甘醇酸支架。聚乳酸/甘醇酸支架與聚乳酸/甘醇酸-明膠與透明質酸支架之壓縮楊氏係數的平均值分別為3.75±0.74MPa和1.27±0.18MPa。在體外降解測試,聚乳酸/甘醇酸支架之重量減少明顯的少於親水性的聚乳酸/甘醇酸-明膠與透明質酸支架。降解後,聚乳酸/甘醇酸支架之結構仍然可以維持外型,但是聚乳酸/甘醇酸-明膠與透明質酸支架因為塊狀腐蝕有不規則外形。
    細胞貼附率在聚乳酸/甘醇酸-明膠與透明質酸支架也顯著性地高於單純聚乳酸/甘醇酸支架。在整個培養過程中,兩組支架均能使軟骨細胞維持形態,而且在聚乳酸/甘醇酸-明膠與透明質酸支架上細胞明顯地有較大之攤附面積與群聚現象。在細胞增生期時,葡萄糖胺聚合醣及醣蛋白顯示在兩組間有可見性的差異。此外,細胞增生測試顯示聚乳酸/甘醇酸-明膠與透明質酸支架比只有聚乳酸/甘醇酸支架還要好。

    結論: 本研究顯示聚乳酸/甘醇酸支架經由明膠與透明質酸修飾後呈現出較好的生物可相容性、適當的力學特性、細胞外基質合成量、細胞增生,以應用於潛能性之工程軟骨。

    Background and purpose: Articular cartiage has a poor self-repaired capability after injury. So far, several treatment methods have been applied in clinic. Howerver, some complications still existed, such as fibrocartilage scar tissue formation, instability, implantion failure and so on. Tissue engineering, combining cells, scaffolds, and envirnment to grow tissue, provides a new strategy to repair damaged cartilage. To date, the best cell source, scaffold material and articature and culture condition used for tissue engineering are still hot topic in research field. The aim of this work is to fabricate and characterize the PLGA and PLGA-gelatin/Hyaluronic acid (PLGA-GH) sponge scaffolds for future cartilage tissue engineering applications.

    Materials and methods: The PLGA sponge scaffold was fabricated by salt leaching method. The PLGA-GH scaffold was modified with gelatin and hyaluronic acid by 1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide (EDAC) cross link agent. Structure, Element analysis, water uptake ratio, mechanical test, and in vitro degradation tests were evaluated for both PLGA and PLGA-GH scaffolds. Primary chondrocytes, isolated from porcine articular cartilages, were used to evaluate the cell compatibility of scaffolds. We evaluated cell attachment ratio, cell morphology, extracellular matrix synthesis, and cell profileration.

    Results and discussion: The pore size of PLGA scaffold fabricated by salt leaching was controlled within 300 to 500 μm with over 90% porosity as we desired. PLGA-GH scaffold has exhibited smother surface observed by SEM. The appearance of nitrogen on PLGA-GH scaffold examined by EDS proved EDAC could link gelatin and HA on PLGA scaffold. PLGA-GH was twice higher in water uptake ratio than PLGA scaffolds in early stage due to its hydrophilic surface. The mean comprssive moduli of PLGA and PLGA-GH scaffolds were 3.75±0.74MPa and 1.27±0.18MPa, respectively. In vitro degradation test, weight loss of PLGA scaffold was significantly less than hydrophilic PLGA-GH. Post degradation, the structure of PLGA scaffolds can be maintained, but PLGA-GH scaffolds had an irregular morphology due to bulk erosion. Cell attachment ratio on PLGA-GH scaffold was also significantly higher than PLGA alone. Both PLGA and PLGA-GH scaffolds can retain chondrocye phenotypes during culture, and cells attached on PLGA-GH scaffold had obviously larger spreading areas, and cluster. The GAGs and PGs synthesis were remarkable different between PLGA and PLGA-GH scaffolds during proliferation. Moreover, PLGA-GH scaffold had better proliferation than PLGA scaffold.

    Conclusion: Our study had showed that PLGA scaffold after modified with gelatin and hyaluronic acid displayed better cell biocompatibility, appropriate mechanical properties, extracellular matrix synthesis, and cell proliferation for potential engineering cartilage.

    中文摘要 I ABSTRACT III 誌謝 V 目錄 VII 表目錄 XI 圖目錄 XII 第1章 緒論 1 1.1 關節軟骨的結構、組成與功能 1 1.2 軟骨受傷機轉 5 1.3 目前軟骨治療方法 8 1.3.1 施打玻尿酸 8 1.3.2 關節鏡與清創手術 9 1.3.3 鑽孔 9 1.3.4 骨膜與軟骨膜移植 10 1.3.5 自體軟骨細胞移植 10 1.3.6 自體骨軟骨移植 11 1.3.7 人工全膝關節置換 12 1.4 軟骨組織工程基本概念 13 1.4.1 軟骨細胞來源 14 1.4.2 細胞支架材料的分類 15 1.4.3 細胞支架的設計原則 19 1.4.4 目前孔洞性支架製備方法 19 1.5 其他研究團隊研究軟骨修復之成果與經驗 21 1.5.1 國外文獻回顧總表 21 1.5.2 國內文獻回顧總表 25 1.6 研究動機 29 1.7 研究目的 30 第2章 材料與方法 31 2.1 實驗設備 31 2.2 實驗藥品名稱 32 2.3 實驗架構 34 2.4 圓柱狀聚乳酸/甘醇酸支架製作 35 2.5 製備聚乳酸/甘醇酸-明膠與透明質酸之複合式支架 36 2.6 軟骨細胞萃取 37 2.7 軟骨細胞種植 39 2.8 細胞支架孔洞率計算 40 2.9 細胞支架吸水量測試 40 2.10 體外支架降解測試 41 2.11 觀察支架形態及成份元素分析 42 2.12 力學測試 42 2.13 細胞貼附率 43 2.14 組織學染色 44 2.14.1 冷凍切片 44 2.14.2 蘇木紫-伊紅染色(Hematoxylin–eosin, H&E stain) 45 2.14.3 阿辛藍染色(Acian Blue stain) 46 2.15 細胞外基質半定量分析 46 2.16 細胞活性測試(MTT ASSAY) 47 2.17 統計分析 48 第3章 研究結果 50 3.1 細胞支架形態學觀察及孔洞率 50 3.2 細胞支架成份元素分析 53 3.3 細胞支架吸水量測試 54 3.4 體外細胞支架降解測試 55 3.4.1 細胞支架降解後表面觀察 55 3.4.2 細胞支架重量減少比率 56 3.5 細胞支架力學測量 58 3.6 細胞貼附率 61 3.7 細胞形態學觀察 62 3.8 細胞外基質合成表現 66 3.9 細胞活性測試 67 第4章 討論 69 4.1 細胞支架製備 69 4.2 細胞支架孔洞性 70 4.3 細胞支架成份元素分析 71 4.4 細胞支架吸水量測試 72 4.5 細胞支架降解 72 4.6 細胞支架力學量測 76 4.7 細胞貼附性測試 79 4.8 切片染色 80 4.9 細胞形態學觀察 (平面培養 V.S. 三維培養) 82 4.10 細胞外基質合成 84 4.11 細胞活性測試 85 4.12 實驗限制 87 4.12.1 細胞支架製備與修飾 87 4.12.2 細胞來源 88 4.12.3 細胞外基質合成表現之定量 88 第5章 結論與未來方向 89 5.1 結論 89 5.2 未來方向 90 5.2.1 骨軟骨細胞支架 90 5.2.2 幹細胞培養 90 5.2.3 無血清培養 90 5.2.4 生物反應器 91 5.2.5 動物試驗 91 第6章 參考文獻 92

    Aguiar, D. J., W. Knudson and C. B. Knudson (1999). "Internalization of the hyaluronan receptor CD44 by chondrocytes." Exp Cell Res 252(2):292-302
    Akmal, M., A. Singh, A. Anand, A. Kesani, N. Aslam, A. Goodship and G. Bentley (2005). "The effects of hyaluronic acid on articular chondrocytes." J Bone Joint Surg Br 87(8):1143-9
    Alvarez-Barreto, J. F. and V. I. Sikavitsas (2007). "Improved mesenchymal stem cell seeding on RGD-modified poly(L-lactic acid) scaffolds using flow perfusion." Macromol Biosci 7(5):579-88
    Barker, M. K. and B. B. Seedhom (2001). "The relationship of the compressive modulus of articular cartilage with its deformation response to cyclic loading: does cartilage optimize its modulus so as to minimize the strains arising in it due to the prevalent loading regime?" Rheumatology (Oxford) 40(3):274-84
    Brach Del Prever, E. M., A. Bistolfi, P. Bracco and L. Costa (2009). "UHMWPE for arthroplasty: past or future?" J Orthop Traumatol 10(1):1-8
    Brown, D. A., Y. F. Chou, R. E. Beygui, J. C. Dunn and B. M. Wu (2005). "Gelatin-embedded cell-polymer constructs for histological cryosectioning." J Biomed Mater Res B Appl Biomater 72(1):79-85
    Buddy D. Ratner, A. S. H., Frederick J. Schoen, Jack E. Lemon (2004). Biomaterials Science: An Introduction to Materials in Medicine 2nd Edition. New York.
    Cao, H. and S. Y. Xu (2008). "EDC/NHS-crosslinked type II collagen-chondroitin sulfate scaffold: characterization and in vitro evaluation." J Mater Sci Mater Med 19(2):567-75
    Cao, T., K. H. Ho and S. H. Teoh (2003). "Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling." Tissue Eng 9 Suppl 1:S103-12
    Carranza-Bencano, A., M. Perez-Tinao, P. Ballesteros-Vazquez, J. R. Armas-Padron, A. Hevia-Alonso and F. Martos Crespo (1999). "Comparative study of the reconstruction of articular cartilage defects with free costal perichondrial grafts and free tibial periosteal grafts: an experimental study on rabbits." Calcif Tissue Int 65(5):402-7
    Chang, C. H., F. H. Lin, C. C. Lin, C. H. Chou and H. C. Liu (2004). "Cartilage tissue engineering on the surface of a novel gelatin-calcium-phosphate biphasic scaffold in a double-chamber bioreactor." J Biomed Mater Res B Appl Biomater 71(2):313-21
    Chen G, S. T., Tanaka J et al (2006). "Preparation of a biphasic scaffold for osteochondral tissue engineering." Materials Science and Engineering 26:118-23
    Chen, W. Y. J. and G. Abatangelo (1999). "Functions of hyaluronan in wound repair." Wound Repair and Regeneration 7(2):79-89
    Cheung H.Y , L. K. T., Lu T.P , Hui D (2007). "A Critical Review on Polymer-Based Bio-engineered Materials for Scaffold Development." Composites: Part B 38:291–300
    Chevalier, X. (2000). "Autologous chondrocyte implantation for cartilage defects: development and applicability to osteoarthritis." Joint Bone Spine 67(6):572-8
    Choi, Y. S., S. R. Hong, Y. M. Lee, K. W. Song, M. H. Park and Y. S. Nam (1999). "Studies on gelatin-containing artificial skin: II. Preparation and characterization of cross-linked gelatin-hyaluronate sponge." J Biomed Mater Res 48(5):631-9
    Chou, C. H., W. T. Cheng, C. C. Lin, C. H. Chang, C. C. Tsai and F. H. Lin (2006). "TGF-beta1 immobilized tri-co-polymer for articular cartilage tissue engineering." J Biomed Mater Res B Appl Biomater 77(2):338-48
    Chou, C. H., W. T. K. Cheng, T. F. Kuo, J. S. Sun, F. H. Lin and J. C. Tsai (2007). "Fibrin glue mixed with gelatin/hyaluronic acid/chondroitin-6-sulfate tri-copolymer for articular cartilage tissue engineering: The results of real-time polymerase chain reaction." Journal of Biomedical Materials Research Part A 82A(3):757-767
    Chung, C. and J. A. Burdick (2008). "Engineering cartilage tissue." Adv Drug Deliv Rev 60(2):243-62
    Clemens van Blitterswijk, P. T., Anders Lindahl, Jeffrey Hubbell, David Williams, Ranieri Cancedda, Joost de Bruijn, Jérôme Sohier (2008). Tissue Engineering. New York.
    Ding, M., M. Dalstra, F. Linde and I. Hvid (1998). "Mechanical properties of the normal human tibial cartilage-bone complex in relation to age." Clin Biomech (Bristol, Avon) 13(4-5):351-358
    Emin, N., A. Koc, S. Durkut, A. E. Elcin and Y. M. Elcin (2008). "Engineering of rat articular cartilage on porous sponges: effects of tgf-beta 1 and microgravity bioreactor culture." Artif Cells Blood Substit Immobil Biotechnol 36(2):123-37
    Felson, D. T. and Y. Zhang (1998). "An update on the epidemiology of knee and hip osteoarthritis with a view to prevention." Arthritis Rheum 41(8):1343-55
    Gao, J., J. E. Dennis, L. A. Solchaga, A. S. Awadallah, V. M. Goldberg and A. I. Caplan (2001). "Tissue-engineered fabrication of an osteochondral composite graft using rat bone marrow-derived mesenchymal stem cells." Tissue Eng 7(4):363-71
    Gao, J., J. E. Dennis, L. A. Solchaga, V. M. Goldberg and A. I. Caplan (2002). "Repair of osteochondral defect with tissue-engineered two-phase composite material of injectable calcium phosphate and hyaluronan sponge." Tissue Eng 8(5):827-37
    Gong, Y. H., L. J. He, J. Li, Q. L. Zhou, Z. W. Ma, C. Y. Gao and J. C. Shen (2007). "Hydrogel-filled polylactide porous scaffolds for cartilage tissue engineering." Journal of Biomedical Materials Research Part B-Applied Biomaterials 82B(1):192-204
    Gong, Y. H., Z. W. Ma, C. Y. Gao, W. Wang and J. C. Shen (2006). "Specially elaborated thermally induced phase separation to fabricate poly(L-lactic acid) scaffolds with ultra large pores and good interconnectivity." Journal of Applied Polymer Science 101(5):3336-3342
    Gopferich, A. (1996). "Mechanisms of polymer degradation and erosion." Biomaterials 17(2):103-14
    Han, S. H., Y. H. Kim, M. S. Park, I. A. Kim, J. W. Shin, W. I. Yang, K. S. Jee, K. D. Park, G. H. Ryu and J. W. Lee (2008). "Histological and biomechanical properties of regenerated articular cartilage using chondrogenic bone marrow stromal cells with a PLGA scaffold in vivo." J Biomed Mater Res A 87(4):850-61
    Hangody, L. and P. Fules (2003). "Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience." J Bone Joint Surg Am 85-A Suppl 2:25-32
    Hoi-Yan Cheung , K.-T. L. a., Tung-Po Lu b, David Hui (2007). "A Critical Review on Polymer-Based Bio-engineered Materials for Scaffold Development." Composites: Part B 38:291–300
    Holy, C. E., M. S. Shoichet and J. E. Davies (2000). "Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: investigating initial cell-seeding density and culture period." J Biomed Mater Res 51(3):376-82
    Hu, J. C. and K. A. Athanasiou (2005). "Low-density cultures of bovine chondrocytes: effects of scaffold material and culture system." Biomaterials 26(14):2001-12
    Huckle, J., G. Dootson, N. Medcalf, S. McTaggart, E. Wright, A. Carter, R. Schreiber, B. Kirby, N. Dunkelman, S. Stevenson, S. Riley, T. Davisson and A. Ratcliffe (2003). "Differentiated chondrocytes for cartilage tissue engineering." Novartis Found Symp 249:103-12; discussion 112-7, 170-4, 239-41
    Hunziker, E. B. (2002). "Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects." Osteoarthritis Cartilage 10(6):432-63
    Hwang, Y. S., J. Cho, F. Tay, J. Y. Heng, R. Ho, S. G. Kazarian, D. R. Williams, A. R. Boccaccini, J. M. Polak and A. Mantalaris (2009). "The use of murine embryonic stem cells, alginate encapsulation, and rotary microgravity bioreactor in bone tissue engineering." Biomaterials 30(4):499-507
    Ishida, O., Y. Tanaka, I. Morimoto, M. Takigawa and S. Eto (1997). "Chondrocytes are regulated by cellular adhesion through CD44 and hyaluronic acid pathway." J Bone Miner Res 12(10):1657-63
    Jackson, R. W. and C. Dieterichs (2003). "The results of arthroscopic lavage and debridement of osteoarthritic knees based on the severity of degeneration: a 4- to 6-year symptomatic follow-up." Arthroscopy 19(1):13-20
    Jiang, C. C., H. Chiang, C. J. Liao, Y. J. Lin, T. F. Kuo, C. S. Shieh, Y. Y. Huang and R. S. Tuan (2007). "Repair of porcine articular cartilage defect with a biphasic osteochondral composite." J Orthop Res 25(10):1277-90
    Joshi, A. B., M. L. Porter, I. A. Trail, L. P. Hunt, J. C. Murphy and K. Hardinge (1993). "Long-term results of Charnley low-friction arthroplasty in young patients." J Bone Joint Surg Br 75(4):616-23
    Jung, Y., S. H. Kim, S. H. Kim, Y. H. Kim, J. Xie, T. Matsuda and B. G. Min (2008). "Cartilaginous tissue formation using a mechano-active scaffold and dynamic compressive stimulation." J Biomater Sci Polym Ed 19(1):61-74
    Karageorgiou, V. and D. Kaplan (2005). "Porosity of 3D biomaterial scaffolds and osteogenesis." Biomaterials 26(27):5474-91
    Kessler, M. W., G. Ackerman, J. S. Dines and D. Grande (2008). "Emerging technologies and fourth generation issues in cartilage repair." Sports Med Arthrosc 16(4):246-54
    Kiani, C., L. Chen, Y. J. Wu, A. J. Yee and B. B. Yang (2002). "Structure and function of aggrecan." Cell Res 12(1):19-32
    Kikuchi, T., H. Yamada and M. Shimmei (1996). "Effect of high molecular weight hyaluronan on cartilage degeneration in a rabbit model of osteoarthritis." Osteoarthritis Cartilage 4(2):99-110
    Kish, G. and L. Hangody (2004). "A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee." J Bone Joint Surg Br 86(4):619; author reply 619-20
    Kreklau, B., M. Sittinger, M. B. Mensing, C. Voigt, G. Berger, G. R. Burmester, R. Rahmanzadeh and U. Gross (1999). "Tissue engineering of biphasic joint cartilage transplants." Biomaterials 20(18):1743-9
    Kuo, C. K., W. J. Li, R. L. Mauck and R. S. Tuan (2006). "Cartilage tissue engineering: its potential and uses." Curr Opin Rheumatol 18(1):64-73
    Langer, R. and J. P. Vacanti (1993). "Tissue engineering." Science 260(5110):920-6
    Laurent, T. (1989). "The Biology of Hyaluronan - Introduction." Ciba Foundation Symposia 143:1-5
    Lee, C. T. and Y. D. Lee (2006). "Preparation of porous biodegradable poly(lactide-co-glycolide)/ hyaluronic acid blend scaffolds: characterization, in vitro cells culture and degradation behaviors." J Mater Sci Mater Med 17(12):1411-20
    Lee S, W. M. (2005). "the influence of mechanical stimulation articular cartilage tissue engineering." Topic in Tissue Engineering:1-32
    Leung, L., C. Chan, S. Baek and H. Naguib (2008). "Comparison of morphology and mechanical properties of PLGA bioscaffolds." Biomed Mater 3(2):25006
    Liu, Y. C., S. Ahmad, X. Z. Shu, R. K. Sanders, S. A. Kopesec and G. D. Prestwich (2006). "Accelerated repair of cortical bone defects using a synthetic extracellular matrix to deliver human demineralized bone matrix." Journal of Orthopaedic Research 24(7):1454-1462
    Malafaya, P. B. and R. L. Reis (2009). "Bilayered chitosan-based scaffolds for osteochondral tissue engineering: influence of hydroxyapatite on in vitro cytotoxicity and dynamic bioactivity studies in a specific double-chamber bioreactor." Acta Biomater 5(2):644-60
    Mano, J. F. and R. L. Reis (2007). "Osteochondral defects: present situation and tissue engineering approaches." J Tissue Eng Regen Med 1(4):261-73
    Mao, J. S., L. G. Zhao, Y. J. Yin and K. D. Yao (2003). "Structure and properties of bilayer chitosan-gelatin scaffolds." Biomaterials 24(6):1067-74
    Martin, I., S. Miot, A. Barbero, M. Jakob and D. Wendt (2007). "Osteochondral tissue engineering." J Biomech 40(4):750-65
    Matt. (2003). "A Patient's Guide to Articular Cartilage Problems of the Knee. From: http://www.eorthopod.com/public."
    Minas, T. and S. Nehrer (1997). "Current concepts in the treatment of articular cartilage defects." Orthopedics 20(6):525-38
    Mohan, N., P. D. Nair and Y. Tabata (2008). "A 3D biodegradable protein based matrix for cartilage tissue engineering and stem cell differentiation to cartilage." J Mater Sci Mater Med
    Mow, V. C. and W. M. Lai (1974). "Some surface characteristics of articular cartilage. I. A scanning electron microscopy study and a theoretical model for the dynamic interaction of synovial fluid and articular cartilage." J Biomech 7(5):449-56
    Musgrave, D. S., F. H. Fu and J. Huard (2002). "Gene therapy and tissue engineering in orthopaedic surgery." J Am Acad Orthop Surg 10(1):6-15
    Nagura I., F. H., Kokubu T. et al (2007). "Repair of porcine articular cartilage defect with a biphasic osteochondral composite
    " J Bone Joint Surgery[Br] 89-B:258-64
    Nettles, D. L., T. P. Vail, M. T. Morgan, M. W. Grinstaff and L. A. Setton (2004). "Photocrosslinkable hyaluronan as a scaffold for articular cartilage repair." Annals of Biomedical Engineering 32(3):391-397
    Niederauer, G. G., M. A. Slivka, N. C. Leatherbury, D. L. Korvick, H. H. Harroff, W. C. Ehler, C. J. Dunn and K. Kieswetter (2000). "Evaluation of multiphase implants for repair of focal osteochondral defects in goats." Biomaterials 21(24):2561-74
    Obradovic, B., R. L. Carrier, G. Vunjak-Novakovic and L. E. Freed (1999). "Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage." Biotechnol Bioeng 63(2):197-205
    Pacifici, M., E. Koyama, M. Iwamoto and C. Gentili (2000). "Development of articular cartilage: what do we know about it and how may it occur?" Connect Tissue Res 41(3):175-84
    Radice, M., P. Brun, R. Cortivo, R. Scapinelli, C. Battaliard and G. Abatangelo (2000). "Hyaluronan-based biopolymers as delivery vehicles for bone-marrow-derived mesenchymal progenitors." Journal of Biomedical Materials Research 50(2):101-109
    Redman, S. N., S. F. Oldfield and C. W. Archer (2005). "Current strategies for articular cartilage repair." Eur Cell Mater 9:23-32; discussion 23-32
    Roth, A., J. Mollenhauer, A. Wagner, R. Fuhrmann, A. Straub, R. A. Venbrocks, P. Petrow, R. Brauer, H. Schubert, J. Ozegowski, G. Peschel, P. J. Muller and R. W. Kinne (2005). "Intra-articular injections of high-molecular-weight hyaluronic acid have biphasic effects on joint inflammation and destruction in rat antigen-induced arthritis." Arthritis Res Ther 7(3):R677-86
    Sasazaki, Y., B. B. Seedhom and R. Shore (2008). "Morphology of the bovine chondrocyte and of its cytoskeleton in isolation and in situ: are chondrocytes ubiquitously paired through the entire layer of articular cartilage?" Rheumatology (Oxford) 47(11):1641-6
    Schaefer, D., I. Martin, G. Jundt, J. Seidel, M. Heberer, A. Grodzinsky, I. Bergin, G. Vunjak-Novakovic and L. E. Freed (2002). "Tissue-engineered composites for the repair of large osteochondral defects." Arthritis Rheum 46(9):2524-34
    Schaefer, D., I. Martin, P. Shastri, R. F. Padera, R. Langer, L. E. Freed and G. Vunjak-Novakovic (2000). "In vitro generation of osteochondral composites." Biomaterials 21(24):2599-606
    Schek, R. M., J. M. Taboas, S. J. Segvich, S. J. Hollister and P. H. Krebsbach (2004). "Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds." Tissue Eng 10(9-10):1376-85
    Sha'ban, M., S. H. Kim, R. B. Idrus and G. Khang (2008). "Fibrin and poly(lactic-co-glycolic acid) hybrid scaffold promotes early chondrogenesis of articular chondrocytes: an in vitro study." J Orthop Surg 3:17
    Shao, X. X., D. W. Hutmacher, S. T. Ho, J. C. Goh and E. H. Lee (2006). "Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits." Biomaterials 27(7):1071-80
    Sherwood, J. K., S. L. Riley, R. Palazzolo, S. C. Brown, D. C. Monkhouse, M. Coates, L. G. Griffith, L. K. Landeen and A. Ratcliffe (2002). "A three-dimensional osteochondral composite scaffold for articular cartilage repair." Biomaterials 23(24):4739-51
    Sigma Product information of Sigma data sheet. CAS NUMBER: 90007-70-8.
    Smith, R. L., J. Lin, M. C. Trindade, J. Shida, G. Kajiyama, T. Vu, A. R. Hoffman, M. C. van der Meulen, S. B. Goodman, D. J. Schurman and D. R. Carter (2000). "Time-dependent effects of intermittent hydrostatic pressure on articular chondrocyte type II collagen and aggrecan mRNA expression." J Rehabil Res Dev 37(2):153-61
    Swieszkowski, W., B. H. Tuan, K. J. Kurzydlowski and D. W. Hutmacher (2007). "Repair and regeneration of osteochondral defects in the articular joints." Biomol Eng 24(5):489-95
    Takahashi, T., T. Ogasawara, Y. Asawa, Y. Mori, E. Uchinuma, T. Takato and K. Hoshi (2007). "Three-dimensional microenvironments retain chondrocyte phenotypes during proliferation culture." Tissue Eng 13(7):1583-92
    Tan, H., Y. Gong, L. Lao, Z. Mao and C. Gao (2007). "Gelatin/chitosan/hyaluronan ternary complex scaffold containing basic fibroblast growth factor for cartilage tissue engineering." J Mater Sci Mater Med 18(10):1961-8
    Tan, H., J. Wu, L. Lao and C. Gao (2009). "Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering." Acta Biomater 5(1):328-37
    Tomihata, K. and Y. Ikada (1997). "Crosslinking of hyaluronic acid with water-soluble carbodiimide." J Biomed Mater Res 37(2):243-51
    Tuli, R., S. Nandi, W. J. Li, S. Tuli, X. Huang, P. A. Manner, P. Laquerriere, U. Noth, D. J. Hall and R. S. Tuan (2004). "Human mesenchymal progenitor cell-based tissue engineering of a single-unit osteochondral construct." Tissue Eng 10(7-8):1169-79
    Uthman, I., J. P. Raynauld and B. Haraoui (2003). "Intra-articular therapy in osteoarthritis." Postgrad Med J 79(934):449-53
    van der Kooy, D. and S. Weiss (2000). "Why stem cells?" Science 287(5457):1439-41
    van Susante, J. L., P. Buma, G. N. Homminga, W. B. van den Berg and R. P. Veth (1998). "Chondrocyte-seeded hydroxyapatite for repair of large articular cartilage defects. A pilot study in the goat." Biomaterials 19(24):2367-74
    von Burkersroda, F., L. Schedl and A. Gopferich (2002). "Why degradable polymers undergo surface erosion or bulk erosion." Biomaterials 23(21):4221-31
    Wang, X., S. P. Grogan, F. Rieser, V. Winkelmann, V. Maquet, M. L. Berge and P. Mainil-Varlet (2004). "Tissue engineering of biphasic cartilage constructs using various biodegradable scaffolds: an in vitro study." Biomaterials 25(17):3681-8
    Wendt, D., S. Stroebel, M. Jakob, G. T. John and I. Martin (2006). "Uniform tissues engineered by seeding and culturing cells in 3D scaffolds under perfusion at defined oxygen tensions." Biorheology 43(3-4):481-8
    Wieland, H. A., M. Michaelis, B. J. Kirschbaum and K. A. Rudolphi (2005). "Osteoarthritis - an untreatable disease?" Nat Rev Drug Discov 4(4):331-44
    Wu, W., T. Mao and X. Feng (2007). "[Fabrication of collagen/sodium hyaluronate scaffold and its biological characteristics for cartilage tissue engineering]." Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 21(4):401-5
    Xia, W. Y., W. Liu, L. Cui, Y. C. Liu, W. Zhong, D. L. Liu, J. J. Wu, K. H. Chua and Y. L. Cao (2004). "Tissue engineering of cartilage with the use of chitosan-gelatin complex scaffolds." Journal of Biomedical Materials Research Part B-Applied Biomaterials 71B(2):373-380
    Yoo, H. S., E. A. Lee, J. J. Yoon and T. G. Park (2005). "Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering." Biomaterials 26(14):1925-33
    Yoshioka, T., N. Kawazoe, T. Tateishi and G. Chen (2008). "In vitro evaluation of biodegradation of poly(lactic-co-glycolic acid) sponges." Biomaterials 29(24-25):3438-43
    Zein, I., D. W. Hutmacher, K. C. Tan and S. H. Teoh (2002). "Fused deposition modeling of novel scaffold architectures for tissue engineering applications." Biomaterials 23(4):1169-85
    Zwingmann, J., A. T. Mehlhorn, N. Sudkamp, B. Stark, M. Dauner and H. Schmal (2007). "Chondrogenic differentiation of human articular chondrocytes differs in biodegradable PGA/PLA scaffolds." Tissue Eng 13(9):2335-43
    王清貞 (1999). 關節軟骨的修復---動物實驗 高雄, 長庚紀念醫院骨科.
    王清貞、陳俞志、鄭修明、陳維仁、黃玄贏 (1999). Cartilage Repair by Free Periosteal Grafts in the Knees of Pigs. 高雄長庚紀念醫院. 高雄市.
    王瑜丰 (2003). 兩相骨軟骨支架的製作與評估體外與體內研究. 台中, 國立中興大學. 碩士論文.
    周正鴻 (2007). 纖維蛋白膠混合明膠/透明質酸/軟骨素共聚物作為關節軟骨組織工程支架之研究. 醫學工程學研究所. 台北市, 國立台灣大學. 博士論文.
    林燕霜 (2006). 動態式淨壓對軟骨細胞代謝之影響. 醫學工程研究所. 台北市, 國立陽明大學. 碩士論文.
    張至宏 (2005). 以生物活性基質進行軟骨及骨軟骨之組織工程. 醫學工程研究所. 台北市, 國立台灣大學 博士論文.
    許芳豪 (2006). 以快速原型技術研究組織工程支架孔徑大小對細胞成長之影響. 機械工程系. 台北市, 國立台灣科技大學
    碩士論文.
    陳嘉文 (2002). 生物相容性共聚物之製備及其在皮質固醇包覆上應用之探討. 台南, 國立成功大學. 碩士論文.
    黃志賢 (1998). 建立一個骨軟骨缺損的動物實驗模型來研究軟骨的重建. 高雄, 行政院國軍退除役官兵輔導委員會.
    黃芷翎 (2005). 以不同比例聚乳酸-聚甘醇酸共聚物製作多層孔隙之新型神經再生導管. 材料科學與工程學系. 台南市, 國立成功大學 碩士論文.
    蔡傑次 (2006). 明膠支架孔洞大小及培養條件對於組織工程軟骨形成的影響. 化學工程學系. 新竹市, 國立清華大學. 碩士論文.
    謝淑枝 (2000). Chitosan-Alginate-Hyaluronate複合物經RGD改質後的組織工程支架應用於軟骨再生之評估. 化學系. 台中市, 國立中興大學  碩士論文.
    簡千翔 (2006). 明膠與陶瓷複合式支架培養關節軟骨細胞的研究. 化學工程學系. 新竹市, 國立清華大學. 碩士論文.

    下載圖示 校內:2011-08-11公開
    校外:2011-08-11公開
    QR CODE