| 研究生: |
楊博馨 Yang, Po-Hsin |
|---|---|
| 論文名稱: |
金屬接點開發應用於木構造柱梁接合與其彎矩及剪力行為 The moment and shear responses of metallic connectors used in Wooden beam-to-column joint |
| 指導教授: |
葉玉祥
Yeh, Yu-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 鳩尾型組件 、自攻螺絲 、柱梁接點 、旋轉行為 、剪力行為 |
| 外文關鍵詞: | Dovetail component, self-tapping screws, post and beam joints, rotational behavior, shear behavior |
| 相關次數: | 點閱:63 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現代木構造建築在歐美國家已發展多年,且因環保意識抬頭,未來木材在建築上的應用也將成為趨勢。臺灣雖然有豐富的林業資源與歷史,但相關的開發應用等技術仍有許多發展空間。本文將朝向木構造建築之結構與其力學性能深入探究。同時亦將針對柱梁接點的設計與工法等進行測試與討論。
木構造柱梁接合的設計,會影響建築結構整體的力學效能。傳統柱梁的接合方式主要以榫卯接合或螺絲鎖固為主,此種方式建造之建築高度多半受限於接合部強度。然為應現代對於高層或超高層建築之需求,近幾年奧地利的Sherpa、Knapp等公司設計出一種鳩尾型金屬組件,成功地應用於高層木構造建築的結構中。鳩尾型組件為一種預製金屬件,其具備施工便利、精準度高與高強度等特性,但同時也存在著耐震數據缺乏與不易購買等問題。因此,在本研究中將朝向針對鳩尾型金屬組件的改良為主要研究方向,同時,期待此組件能夠用於臺灣等地震帶地區的建築結構上,將以簡化工序、取材方便與提升剪力強度與抗彎強度為目標。
本研究之鳩尾型組件將以「雙板式」形式為主,並在設計時著重於三大重點,分別是螺絲鎖固角度、組件安裝位置與組件扣合方式。設計完成後,會以單向側推加載機制進行剪力實驗及旋轉實驗,並分析試體之極限強度、降伏強度、極限彎矩、降伏彎矩與勁度等數據。同時,也觀察各項實驗結果,比對圖表並歸納試體的破壞模式及推論其力學行為。最終,再以本次實驗與過去的研究成果進行對照分析。
從剪力實驗結果得知,本研究之雙板式組件的平均極限強度為16.06 kN,勁度為3.68 kN/mm,相較型態較接近之單板式SherpaS15組件的極限強度提升了7%;而在旋轉實驗結果中,測得之旋轉勁度為31.08 (kN-m)/rad,極限彎矩為3.71 kN-m,降伏彎矩為3.44 kN-m;相較「12cm單板式」組件分別提升21%、提升851%、提升1086%;而「14cm單板式」組件則分別下降29%、提升600%、提升760%。經比對後發現,雙板式組件中各項數值幾乎皆大於單板式組件,唯旋轉勁度結果下降,推測可能是材料特性所致。與此同時,在觀察本設計之雙板式組件的破壞後發現,加載後各個組件都有出現U型形變之現象,而在卸載後,部分組件會恢復如加載前之樣貌。
自最終數據與破壞模式比對中可得到以下結論,本研究之雙板式組件的形態、安裝位置與螺絲鎖固角度等設計,皆能有效提升柱梁整體力學效能。而在本研究中尚未探討結構之防火效能,因此將在後續建議中提出可延伸探討的方向。
The modern wooden construction has been developed for many years in Europe and the United States. The application of wood in buildings will likely become a trend in the future. Taiwan consists of abundant forestry resources and profound historical background, but relevant practical applications are still rare in the building sector. This thesis is focused on metallic connectors for post-and-beam joints. In the meantime, this thesis will discuss the installation method and experimental data.
Traditional post-and-beam joints usually use mortise-tenon or screw for locking. The height of buildings constructed in this method is always limited by the capacity of joints. In recent years, some companies in Europe, have developed dovetail metal components, which have been successfully applied to high-rise wooden buildings. Dovetail components are prefabricated metal connectors, which facilitate the construction processes, and exhibit high accuracy, and considerable capacity. Therefore, this thesis attempts to improve the dovetail component’s performance, simplify the construction process, make the components efficient and improve the joint’s capacity are the main aims in this study.
In this study, the dovetail component is mainly designed in the form of a "double-plate profile". The design is focused on three main points: [1] the angle of screw locking, [2] the position of components mounting, and [3] the method of components fastening. Then, this thesis carried out a series of full-scale testing to estimate the joint’s shear and rotation performance. The purpose of the experiments is to obtain the stiffness, yielding resistance, and ultimate capacity, in terms of both shear and rotational behavior. The investigation has emphasized the deformation of meta connectors, the withdrawal patterns of screws, and the failure modes of wooden elements. In the meantime, this study’s results of the experiments will be compared with the previous research.
This thesis comprises two parts of experiments. First, in the shear test, the ultimate capacity is 16.06 kN. Compared to the other dovetail metallic connector’s results of the study, like SherpaS15 single-plate profile’s ultimate capacity is 15.0 kN, which is less than the double-plate profile, about 7%. Second, in the rotational test, the ultimate moment is 3.71 kN -m, the rotational stiffness is 31.08 kN -m/rad, and the ductility ratio is 2.99. Compared to the other dovetails in Lin’s study (2021), 12cm single-plate profile and 14cm single-plate profile. This thesis’s ultimate moment, rotational stiffness, and ductility ratio are higher than the 12cm single-plate profile 21%, 851%, and 1086%. Simultaneously, compared to the 14cm single-plate profile’s data, the double-plate profile’s ultimate moment, rotational stiffness, and ductility ratio get 29%, 600%, and 760% higher.
In the comparison of the final data and the damage pattern, the following conclusions can be drawn: The design of the "double-plate profile" components in terms of shape, mounting position, and screw clamping angle can effectively improve the overall mechanical performance of the column and beam. However, the homogeneity of the damage pattern is high, so we will propose improvement methods and directions for further investigation in our subsequent recommendations.
一、中文文獻:
[1] 林憲德, 蔡耀賢, & 楊詩弘 (2019) 建築材料碳足跡資料系統建置之研究
[2] 徐明福, 張紋韶 (2005) 臺灣傳統鉤逗榫及踏步燕尾榫力學特性之研究
[3] 葉民權, 林玉麗, 宋雲煒 (2019) 結構用自攻螺絲在木材之垂直引拔抵抗性能評估
[4] 葉民權, 林玉麗, 顏大翔, & 林秀鑾 (2019) 應用自攻螺絲於直交集成板接合之剪斷抵抗探討. 臺灣林業科學, 34(3), 179-195.
[5] 王劭瑋 (2020) 國產福杉柱梁接點以商用鐵件補強的旋轉行為
[6] 鄭廷安 (2021) 木構造柱梁接點預製金屬接合件的旋轉行為與性能優化
[7] 林沛均 (2021) 木構造柱梁接點以新開發金屬組件接合的旋轉行為
[8] 葉民權, 林玉麗, 宋雲煒 (2019) 結構用自攻螺絲在木材之垂直引拔抵抗性能評估
[9] 許茂雄 (1999),建築結構系統。
[10] 陳啟中 (2009),建築結構系統 (初版),詹氏書局。
[11] 李景亮,林煌欽,蘇煜瑄 (2021),高層建築の基礎工法篇,讀享數位。
[12] 張正瑜(譯)(2019)。木構造全書(原作者:山邊豐彥)。臺北市:易博士文化。(原著出版年:2015)
[13] 陳純森 (2019),鋼結構工程實務(第五版),科技圖書。
[14] 日本建築學會,木構造設計規準∙同解說(第四版第二刷),日本建築学会。
[15] 日本建築構造技術者協會,木造建築構造の設計(第三版),株式會社オ-ム社。
二、外文文獻:
[15] Yeh, M., Lin, Y., & Huang, G. (2016). Study of the shear performance of glulam joints using mechanical connectors and self-tapping screws. Taiwan Journal of Forest Science, 31(2), 119-133.
[16] Leijten, A. J. M., & Brandon, D. (2013). Advances in moment transferring dvw reinforced timber connections – Analysis and experimental verification, Part 1. Construction and Building Materials, 43, 614-622.
[17] Masaeli, M., Gilbert, B. P., Karampour, H., Underhill, I. D., Lyu, C. H., & Gunalan, S. (2020). Scaling effect on the moment and shear responses of three types of beam-to-column connectors used in mass timber buildings. Engineering Structures, 208, 110329.
[18] Li, H., Lam, F., & Qiu, H. (2019). Comparison of glulam beam-to-beam connections with round dovetail and half-lap joints reinforced with self-tapping screws. Construction and Building Materials, 227, 116437.
[19] Ataei, A., Valipour, H. R., Bradford, M. A., & Chiniforush, A. A. (2019). Experimental study of steel-timber composite beam-to-column joints with extended end plates [Article]. Construction and Building Materials, 226, 636-650.
三、參考網站:
[29] 德豐木業股份有限公司官網。取自:http://www.tefeng.com.tw/
[30] 立冠精密有限公司官網。取自:https://www.twincn.com/item.aspx?no=28577150
[31] SHERPA官網。取自:https://www.sherpa-connector.com/?LNG=en
[32] KNAPP官網。取自:https://www.knapp-verbinder.com/en/
[33] 銘建工業株式會社官網。取自:https://www.meikenkogyo.com/
[34] 華興工業股份有限公司官網。取自:https://www.hwahsing.com/home-tw
[35] Rothoblaas官網。取自:https://www.rothoblaas.com/