簡易檢索 / 詳目顯示

研究生: 張琮浩
Chang, Tsung-Hao
論文名稱: 探討WWOX於胸腺細胞發育過程調控NOTCH1訊息以及在脂多醣引起敗血性休克中調控TLR4訊息的分子機制
Study of the molecular mechanisms by which WWOX regulates NOTCH1 signaling in thymocyte development and TLR4 signaling in LPS-induced septic shock
指導教授: 徐麗君
Hsu, Li-Jin
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 84
中文關鍵詞: 腫瘤抑制因子胸腺細胞發育訊息傳遞
外文關鍵詞: WWOX, thymocyte development, TLR4 signaling
相關次數: 點閱:84下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 含雙色胺酸功能區氧化還原酶(WWOX)過去被認為是能引起癌細胞死亡的腫瘤抑制因子。WWOX缺乏的小鼠會有離乳前死亡、骨發育異常、發育遲緩、神經性異常以及胸腺和脾臟萎縮的現象。一則全基因分析研究指出,WWOX基因的單核甘酸多態性與克隆氏症(Crohn’s disease)的發炎嚴重程度有相關性。另外,透過氣管投予抑制WWOX的小分子干擾核糖核酸,會使脂多醣lipopolysaccharide (LPS)引起的小鼠肺臟發炎更為嚴重。為了探討WWOX調控免疫系統的分子機制,我們建立了Wwox基因缺陷的小鼠模式,並且發現缺乏WWOX的小鼠胸腺細胞大量死亡並且有發育的缺陷。NOTCH1訊息對於胸腺細胞的存活和發育是不可或缺的,我們發現Notch1蛋白質的表現於缺乏Wwox的小鼠胸腺細胞中大量地減少。原因為胸腺細胞缺乏WWOX後,無法抑制泛素化酶ITCH的表現、和其結合至NOTCH1的能力,進而造成NOTCH1大量地被ITCH泛素化並降解。我們更進一步證明WWOX會結合NOTCH1,讓它不被會ITCH結合並泛素化,因而維持胸腺細胞的發育。除此之外,我們也利用LPS引起小鼠敗血性休克的模式,來探討WWOX調節發炎的分子機制。相較於控制組,Wwox缺陷的小鼠對於LPS引起的敗血性休克更為敏感。在LPS給予細胞後,細胞的TLR4會接收訊號並活化Myddosome來傳遞訊息。在LPS刺激之下,缺乏WWOX的巨噬細胞製造的促發炎細胞激素較多,透過NF-κB傳遞的訊息也較強。當WWOX缺乏的巨噬細胞受到LPS的刺激後,Myddosome活化的程度較強。另外,WWOX能與 IRAK1和MyD88結合,進而加速其降解。這些結果指出WWOX可以透過調控IRAK1和MyD88來抑制TLR4的訊息傳遞。以上的研究結果指出WWOX不只能調控細胞死亡,它也透過影響NOTCH1而維持胸腺細胞發育,並且能抑制TLR4的訊息來控制發炎。

    WW domain-containing oxidoreductase (designated WWOX, FOR or murine WOX1) has been shown to promote stress-induced cancer cell death and function as a tumor suppressor. Previous studies have reported that Wwox-/- mice exhibited preweaning lethality, abnormal bone formation, growth retardation, neural disorders, and thymic and splenic atrophy. A genome-wide analysis indicated that an SNP in WWOX is associated with the inflammatory severity in Crohn’s disease. Moreover, intratracheal introduction of Wwox siRNA resulted in elevated neutrophilic inflammation upon lipopolysaccharide (LPS) treatment. However, how WWOX regulates the immune system remains unclear. We have generated Wwox-/- mice by gene targeting to study the regulatory roles of WWOX in the immune system. We found significantly increased levels of thymocyte apoptosis due to an intrinsic developmental defect in Wwox-/- mice. The protein expression of NOTCH1, a critical receptor for transmitting the developmental and survival signal in thymocytes, was downregulated in Wwox-/- thymocytes. We demonstrated that WWOX competed with ITCH, a HECT domain-type E3 ligase, for binding to NOTCH1, and this competition stabilized NOTCH1 protein and maintained NOTCH1 signaling in thymocytes. Additionally, WWOX also interacted with ITCH and promoted Lys48-linked polyubiquitination and degradation of ITCH. To further study the regulatory role of WWOX in the inflammatory response, we also established an LPS-induced septic shock animal model with the use of our generated Wwox-/- mice. We found that Wwox-/- mice were more susceptible to LPS-induced septic shock as compared with their control littermates. Increased NF-κB activation and pro-inflammatory cytokine production upon LPS stimulation of Toll-like receptor 4 (TLR4) were observed in Wwox-knockdown Raw 264.7 cells and Wwox-/- bone marrow-derived macrophages. After LPS treatment, TLR4 triggers the assembly of Myddosome, which is composed of the adaptor MyD88 and the IRAK family kinases, to transduce downstream signaling. Increased Myddosome formation and activation were found in Wwox-knockdown Raw 264.7 macrophages after LPS treatment. Moreover, our data showed that WWOX interacted with both IRAK1 and MyD88 and promoted their degradation, suggesting that WWOX suppresses TLR4 signaling via downregulating Myddosome formation. Together, our in vivo and in vitro findings run against the role of WWOX as a pro-apoptotic protein and unravel novel functions of WWOX in both thymocyte development and inflammation.

    中文摘要 I ABSTRACT II 致謝 IV TABLE OF CONTENTS V LIST OF TABLES VI LIST OF FIGURES VII I. Wwox is crucial for thymocyte development and survival 1 INTRODUCTION 1 RESULTS 4 DISCUSSION 6 II. The regulatory role of WWOX in NOTCH1 signaling pathway 9 INTRODUCTION 9 RESULTS 11 DISCUSSION 16 III. The regulatory role of WWOX in TLR4 signaling pathway 19 INTRODUCTION 19 RESULTS 22 DISCUSSION 28 CONCLUSION 31 MATERIALS AND METHODS 33 REFERENCES 39

    [1] A.K. Bednarek, K.J. Laflin, R.L. Daniel, Q. Liao, K.A. Hawkins, C.M. Aldaz, WWOX, a novel WW domain-containing protein mapping to human chromosome 16q23.3-24.1, a region frequently affected in breast cancer, Cancer Research, 60 (2000) 2140-2145.
    [2] R.I. Aqeilan, A. Palamarchuk, R.J. Weigel, J.J. Herrero, Y. Pekarsky, C.M. Croce, Physical and functional interactions between the Wwox tumor suppressor protein and the AP-2gamma transcription factor, Cancer Research, 64 (2004) 8256-8261.
    [3] N.S. Chang, Hyaluronidase Induction of a WW Domain-containing Oxidoreductase That Enhances Tumor Necrosis Factor Cytotoxicity, Journal of Biological Chemistry, 276 (2000) 3361-3370.
    [4] R.I. Aqeilan, Functional association between Wwox tumor suppressor protein and p73, a p53 homolog, Proceedings of the National Academy of Sciences, 101 (2004) 4401-4406.
    [5] Z. Salah, T. Bar-mag, Y. Kohn, F. Pichiorri, T. Palumbo, G. Melino, R.I. Aqeilan, Tumor suppressor WWOX binds to ΔNp63α and sensitizes cancer cells to chemotherapy, Cell Death and Disease, 4 (2013) e480.
    [6] R.I. Aqeilan, V. Donati, E. Gaudio, M.S. Nicoloso, M. Sundvall, A. Korhonen, J. Lundin, J. Isola, M. Sudol, H. Joensuu, C.M. Croce, K. Elenius, Association of Wwox with ErbB4 in Breast Cancer, Cancer Research, 67 (2007) 9330-9336.
    [7] R.I. Aqeilan, V. Donati, A. Palamarchuk, F. Trapasso, M. Kaou, Y. Pekarsky, M. Sudol, C.M. Croce, WW domain-containing proteins, WWOX and YAP, compete for interaction with ErbB-4 and modulate its transcriptional function, Cancer Research, 65 (2005) 6764-6772.
    [8] C. Jin, L. Ge, X. Ding, Y. Chen, H. Zhu, T. Ward, F. Wu, X. Cao, Q. Wang, X. Yao, PKA-mediated protein phosphorylation regulates ezrin–WWOX interaction, Biochemical and Biophysical Research Communications, 341 (2006) 784-791.
    [9] J.H. Ludes-Meyers, H. Kil, A.K. Bednarek, J. Drake, M.T. Bedford, C.M. Aldaz, WWOX binds the specific proline-rich ligand PPXY: identification of candidate interacting proteins, Oncogene, 23 (2004) 5049-5055.
    [10] E. Gaudio, A. Palamarchuk, T. Palumbo, F. Trapasso, Y. Pekarsky, C.M. Croce, R.I. Aqeilan, Physical Association with WWOX Suppresses c-Jun Transcriptional Activity, Cancer Research, 66 (2006) 11585-11589.
    [11] N.S. Chang, JNK1 Physically Interacts with WW Domain-containing Oxidoreductase (WOX1) and Inhibits WOX1-mediated Apoptosis, Journal of Biological Chemistry, 278 (2003) 9195-9202.
    [12] C.I. Sze, Down-regulation of WW Domain-containing Oxidoreductase Induces Tau Phosphorylation in Vitro: A POTENTIAL ROLE IN ALZHEIMER'S DISEASE, Journal of Biological Chemistry, 279 (2004) 30498-30506.
    [13] H.Y. Wang, L.I. Juo, Y.T. Lin, M. Hsiao, J.T. Lin, C.H. Tsai, Y.H. Tzeng, Y.C. Chuang, N.S. Chang, C.N. Yang, P.J. Lu, WW domain-containing oxidoreductase promotes neuronal differentiation via negative regulation of glycogen synthase kinase 3β, Cell Death and Differentiation, 19 (2011) 1049-1059.
    [14] V. Donati, G. Fontanini, M. Dell'Omodarme, M.C. Prati, S. Nuti, M. Lucchi, A. Mussi, M. Fabbri, F. Basolo, C.M. Croce, R.I. Aqeilan, WWOX expression in different histologic types and subtypes of non-small cell lung cancer, Clinical Cancer Research, 13 (2007) 884-891.
    [15] R.I. Aqeilan, T. Kuroki, Y. Pekarsky, O. Albagha, F. Trapasso, R. Baffa, K. Huebner, P. Edmonds, C.M. Croce, Loss of WWOX expression in gastric carcinoma, Clinical Cancer Research, 10 (2004) 3053-3058.
    [16] T. Kuroki, S. Yendamuri, F. Trapasso, A. Matsuyama, R.I. Aqeilan, H. Alder, S. Rattan, R. Cesari, M.L. Nolli, N.N. Williams, M. Mori, T. Kanematsu, C.M. Croce, The tumor suppressor gene WWOX at FRA16D is involved in pancreatic carcinogenesis, Clinical Cancer Research, 10 (2004) 2459-2465.
    [17] G. Guler, A. Uner, N. Guler, S.Y. Han, D. Iliopoulos, W.W. Hauck, P. McCue, K. Huebner, The fragile genes FHIT and WWOX are inactivated coordinately in invasive breast carcinoma, Cancer, 100 (2004) 1605-1614.
    [18] K. Kosla, E. Pluciennik, A. Kurzyk, D. Jesionek-Kupnicka, R. Kordek, P. Potemski, A.K. Bednarek, Molecular analysis of WWOX expression correlation with proliferation and apoptosis in glioblastoma multiforme, Journal of Neuro-Oncology, 101 (2011) 207-213.
    [19] W. Guo, G. Wang, Y. Dong, Y. Guo, G. Kuang, Z. Dong, Decreased expression of WWOX in the development of esophageal squamous cell carcinoma, Molecular Carcinogenesis, 52 (2013) 265-274.
    [20] W. Winardi, C.Y. Tsai, W.T. Chen, H.P. Tsai, C.L. Chung, J.K. Loh, C.Y. Chai, A.L. Kwan, Reduced WWOX protein expression in human astrocytoma, Neuropathology, 33 (2013) 621-627.
    [21] M. Mallaret, M. Synofzik, J. Lee, C.A. Sagum, M. Mahajnah, R. Sharkia, N. Drouot, M. Renaud, F.A. Klein, M. Anheim, C. Tranchant, C. Mignot, J.L. Mandel, M. Bedford, P. Bauer, M.A. Salih, R. Schule, L. Schols, C.M. Aldaz, M. Koenig, The tumour suppressor gene WWOX is mutated in autosomal recessive cerebellar ataxia with epilepsy and mental retardation, Brain, 137 (2014) 411-419.
    [22] M. Valduga, C. Philippe, L. Lambert, P. Bach-Segura, E. Schmitt, J.P. Masutti, B. Francois, P. Pinaud, M. Vibert, P. Jonveaux, WWOX and severe autosomal recessive epileptic encephalopathy: first case in the prenatal period, Journal of Human Genetics, 60 (2015) 267-271.
    [23] K. Kothur, K. Holman, E. Farnsworth, G. Ho, M. Lorentzos, C. Troedson, S. Gupta, R. Webster, P.G. Procopis, M.P. Menezes, J. Antony, S. Ardern-Holmes, R.C. Dale, J. Christodoulou, D. Gill, B. Bennetts, Diagnostic yield of targeted massively parallel sequencing in children with epileptic encephalopathy, Seizure, 59 (2018) 132-140.
    [24] J. Johannsen, F. Kortum, G. Rosenberger, K. Bokelmann, M.A. Schirmer, J. Denecke, R. Santer, A novel missense variant in the SDR domain of the WWOX gene leads to complete loss of WWOX protein with early-onset epileptic encephalopathy and severe developmental delay, Neurogenetics, (2018).
    [25] B. Tabarki, A. AlHashem, S. AlShahwan, F.S. Alkuraya, S. Gedela, G. Zuccoli, Severe CNS involvement in WWOX mutations: Description of five new cases, American Journal of Medical Genetics Part A, 167A (2015) 3209-3213.
    [26] M.C. Visschedijk, L.M. Spekhorst, S.C. Cheng, E.S. van Loo, B.H.D. Jansen, T. Blokzijl, H. Kil, D.J. de Jong, M. Pierik, J. Maljaars, C.J. van der Woude, A.A. van Bodegraven, B. Oldenburg, M. Lowenberg, V.B. Nieuwenhuijs, F. Imhann, S. van Sommeren, R. Alberts, R.J. Xavier, G. Dijkstra, K. Nico Faber, C. Marcelo Aldaz, R.K. Weersma, E.A.M. Festen, Genomic and Expression Analyses Identify a Disease-Modifying Variant for Fibrostenotic Crohn's Disease, Jorunal of Crohn's and Colitis, 12 (2018) 582-588.
    [27] R.I. Aqeilan, M.Q. Hassan, A. de Bruin, J.P. Hagan, S. Volinia, T. Palumbo, S. Hussain, S.H. Lee, T. Gaur, G.S. Stein, J.B. Lian, C.M. Croce, The WWOX tumor suppressor is essential for postnatal survival and normal bone metabolism, Journal of Biological Chemistry, 283 (2008) 21629-21639.
    [28] J.H. Ludes-Meyers, H. Kil, J. Parker-Thornburg, D.F. Kusewitt, M.T. Bedford, C.M. Aldaz, Generation and characterization of mice carrying a conditional allele of the Wwox tumor suppressor gene, PLoS One, 4 (2009) e7775.
    [29] H. Suzuki, K. Katayama, M. Takenaka, K. Amakasu, K. Saito, K. Suzuki, A spontaneous mutation of the Wwox gene and audiogenic seizures in rats with lethal dwarfism and epilepsy, Genes, Brain and Behavior, 8 (2009) 650-660.
    [30] S. Singla, J. Chen, S. Sethuraman, J.R. Sysol, A. Gampa, S. Zhao, R.F. Machado, Loss of lung WWOX expression causes neutrophilic inflammation, American Journal of Physiology-Lung Cellular and Molecular Physiology, 312 (2017) L903-L911.
    [31] R. Kopan, M.X.G. Ilagan, The Canonical Notch Signaling Pathway: Unfolding the Activation Mechanism, Cell, 137 (2009) 216-233.
    [32] T. Borggrefe, F. Oswald, The Notch signaling pathway: Transcriptional regulation at Notch target genes, Cellular and Molecular Life Sciences, 66 (2009) 1631-1646.
    [33] F. Radtke, A. Wilson, G. Stark, M. Bauer, J. van Meerwijk, H.R. MacDonald, M. Aguet, Deficient T cell fate specification in mice with an induced inactivation of Notch1, Immunity, 10 (1999) 547-558.
    [34] H. Takeuchi, R.S. Haltiwanger, Role of glycosylation of Notch in development, Seminars in Cell & Developmental Biology, 21 (2010) 638-645.
    [35] E.C. Lai, Protein degradation: four E3s for the notch pathway, Current Biology, 12 (2002) R74-78.
    [36] M.A. McGill, Mammalian Numb Proteins Promote Notch1 Receptor Ubiquitination and Degradation of the Notch1 Intracellular Domain, Journal of Biological Chemistry, 278 (2003) 23196-23203.
    [37] L. Qiu, Recognition and Ubiquitination of Notch by Itch, a Hect-type E3 Ubiquitin Ligase, Journal of Biological Chemistry, 275 (2000) 35734-35737.
    [38] E. Gallagher, Activation of the E3 ubiquitin ligase Itch through a phosphorylation-induced conformational change, Proceedings of the National Academy of Sciences, 103 (2006) 1717-1722.
    [39] S. Santini, V. Stagni, R. Giambruno, G. Fianco, A. Di Benedetto, M. Mottolese, M. Pellegrini, D. Barila, ATM kinase activity modulates ITCH E3-ubiquitin ligase activity, Oncogene, 33 (2014) 1113-1123.
    [40] F. Scialpi, M. Malatesta, A. Peschiaroli, M. Rossi, G. Melino, F. Bernassola, Itch self-polyubiquitylation occurs through lysine-63 linkages, Biochemical Pharmacology, 76 (2008) 1515-1521.
    [41] R. Mouchantaf, B.A. Azakir, P.S. McPherson, S.M. Millard, S.A. Wood, A. Angers, The Ubiquitin Ligase Itch Is Auto-ubiquitylated in Vivo and in Vitro but Is Protected from Degradation by Interacting with the Deubiquitylating Enzyme FAM/USP9X, Journal of Biological Chemistry, 281 (2006) 38738-38747.
    [42] M. Abu-Odeh, T. Bar-Mag, H. Huang, T. Kim, Z. Salah, S.K. Abdeen, M. Sudol, D. Reichmann, S. Sidhu, P.M. Kim, R.I. Aqeilan, Characterizing WW domain interactions of tumor suppressor WWOX reveals its association with multiprotein networks, Journal of Biological Chemistry, 289 (2014) 8865-8880.
    [43] A. Farooq, Structural insights into the functional versatility of WW domain-containing oxidoreductase tumor suppressor, Experimental Biology and Medicine (Maywood, N.J.), 240 (2015) 361-374.
    [44] L. Puca, P. Chastagner, V. Meas-Yedid, A. Israel, C. Brou, Alpha-arrestin 1 (ARRDC1) and beta-arrestins cooperate to mediate Notch degradation in mammals, Journal of Cell Science, 126 (2013) 4457-4468.
    [45] Y.-C. Liu, The E3 ubiquitin ligase Itch in T cell activation, differentiation, and tolerance, Seminars in Immunology, 19 (2007) 197-205.
    [46] N. Xiao, D. Eto, C. Elly, G. Peng, S. Crotty, Y.C. Liu, The E3 ubiquitin ligase Itch is required for the differentiation of follicular helper T cells, Nature Immunology, 15 (2014) 657-666.
    [47] E. Naik, J.D. Webster, J. DeVoss, J. Liu, R. Suriben, V.M. Dixit, Regulation of proximal T cell receptor signaling and tolerance induction by deubiquitinase Usp9X, Journal of Experimental Medicine, 211 (2014) 1947-1955.
    [48] H.P. Lin, J.Y. Chang, S.R. Lin, M.H. Lee, S.S. Huang, L.J. Hsu, N.S. Chang, Identification of an In Vivo MEK/WOX1 Complex as a Master Switch for Apoptosis in T Cell Leukemia, Genes & Cancer, 2 (2011) 550-562.
    [49] S. Akira, K. Takeda, Toll-like receptor signalling, Nature Reviews Immunology, 4 (2004) 499-511.
    [50] N.J. Gay, M.F. Symmons, M. Gangloff, C.E. Bryant, Assembly and localization of Toll-like receptor signalling complexes, Nature Reviews Immunology, 14 (2014) 546-558.
    [51] M. Muzio, J. Ni, P. Feng, V.M. Dixit, IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling, Science, 278 (1997) 1612-1615.
    [52] C. Wang, L. Deng, M. Hong, G.R. Akkaraju, J. Inoue, Z.J. Chen, TAK1 is a ubiquitin-dependent kinase of MKK and IKK, Nature, 412 (2001) 346-351.
    [53] A. Kanayama, R.B. Seth, L. Sun, C.K. Ea, M. Hong, A. Shaito, Y.H. Chiu, L. Deng, Z.J. Chen, TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains, Molecular Cell, 15 (2004) 535-548.
    [54] C.J. Wu, D.B. Conze, T. Li, S.M. Srinivasula, J.D. Ashwell, Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation [corrected], Nature Cell Biology, 8 (2006) 398-406.
    [55] D.L. Boone, E.E. Turer, E.G. Lee, R.C. Ahmad, M.T. Wheeler, C. Tsui, P. Hurley, M. Chien, S. Chai, O. Hitotsumatsu, E. McNally, C. Pickart, A. Ma, The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses, Nature Immunology, 5 (2004) 1052-1060.
    [56] N. Shembade, N.S. Harhaj, K. Parvatiyar, N.G. Copeland, N.A. Jenkins, L.E. Matesic, E.W. Harhaj, The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20, Nature Immunology, 9 (2008) 254-262.
    [57] Y.S. Lee, J.S. Park, J.H. Kim, S.M. Jung, J.Y. Lee, S.J. Kim, S.H. Park, Smad6-specific recruitment of Smurf E3 ligases mediates TGF-beta1-induced degradation of MyD88 in TLR4 signalling, Nature Communications, 2 (2011) 460.

    無法下載圖示 校內:2023-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE