| 研究生: |
簡旭甫 Jian, Syu-Fu |
|---|---|
| 論文名稱: |
不同加載速率下摩擦單擺支承之消能行為測試 Energy Dissipation Performance of Friction Pendulum System under Different Loading Speed |
| 指導教授: |
朱世禹
Chu, Shih-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 216 |
| 中文關鍵詞: | 摩擦單擺支承 、多重取樣技術 、擬動態試驗 、加載速率 、隔震系統 |
| 外文關鍵詞: | Friction Pendulum System, Multiple Sampling Techniques, Pseudo-Dynamic Test, Loading Rate, Isolation System |
| 相關次數: | 點閱:141 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摩擦單擺支承(簡稱FPS)為現今許多結構物常採用之隔震元件,若需觀察或測試實尺寸結構裝設FPS之實際消能行為或隔震效果,多透過縮尺結構模型搭配縮尺元件之振動台實驗完成,然而縮尺元件之消能行為是否足以推論實尺元件之隔減震效能,可進一步採用實尺寸元件之擬動態實驗進行測試。但要實行擬動態實驗前,需先確認FPS元件之摩擦力回授訊號量測值是否會受到加載速率之影響。因此本文採用多重取樣技術,針對FPS系統進行不同加載速率之元件測試,並針對摩擦力量測訊號進行探討。傳統之元件測試試驗命令發送時間間隔通常等於量測取樣時間,而多重取樣量測技術可以在制動器位移命令發送時間間隔中,利用較多的量測取樣數目,以了解致動器的詳細運作過程及試體的行為,並可藉由較多的量測取樣資料進行訊號之平均,以獲得較準確之摩擦力回饋訊號,確保未來擬動態實驗之正確性。且經由不同加載速率之測試,亦可選擇在對應試體載重下,油壓制動器工作範圍之合適命令發送時間間隔,以確保制動器位移命令之達成率。多重取樣元件測試結果顯示,在致動器的工作範圍下,多重取樣元件測試之加載速率快慢並不影響摩擦力回授訊號量測值,證實FPS的確可以施行慢速擬動態實驗。而初步擬動態實驗測試結果顯示,令實驗結果不盡理想的主因可能在於本實驗架構無法完整模擬摩擦力的黏著行為,未來若能改進此情況則擬動態實驗可有成功的機會。
Friction pendulum system (FPS) is widely adopted isolation component for many structures today. In order to observe or validate its energy dissipation behavior and isolation performance, shaking table tests of scale-down models and scale-down components are usually conducted. The experimental results may not be able to infer the isolation performance of full-scale components; therefore, pseudo-dynamic tests of full-scale components can provide further information. Prior to the pseudo-dynamic test, one should confirm that the friction behavior of FPS is loading rate independent. The multiple sampling technique is applied in this study to observe the hysteresis loops of FPS components under different loading rates. It samples multiple feedback measurements during the sampling period of actuator command to provide detailed characteristics of FPS components and ensure the quality of force measurements. Furthermore, multiple sampling data can be averaged to ensure the accuracy of pseudo-dynamic test. The results of component tests demonstrate that the hysteresis loops of FPS components under different loading rates have similar rate-independent characteristics.
[1] Cezmi Kayabasi, “Settling Time Measurement Techniques Achieving High Precision at High Speeds”, Worcester Polytechnic Institue, (2005).
[2] Chung, W. J., Yun, C. B., Kim, N. S. and Seo, J. W. “Shaking table and pseudodynamic tests for the evaluation of the seismic performance of base-isolated structures” Engineering Structures, 365-379 (1999).
[3] Hakuno, M., Shidawara, M. and. Hara, T., “Dynamic destructive test of a cantileverbeam controlled by an analog-computer” Transactions Japan Society of Engineers, 1-9 (1969).
[4] Lu, L. Y., L. L. Chung, L. Y. Wu, G. L. Lin, “Dynamic analysis of structures with friction devices using discrete-time state-space formulation” Computers and Structures, Vol. 84,No.15-16,1049-1071 (2006).
[5] Nakashima, M., “Extensions of hybrid structural testing” 擬動態實驗研究講習會,台灣(1992)。
[6] Nakashima, M., “Stability and accuracy of integration techniques in pseudo dynamic testing” Research paper, Building Research Inst. Ministry of Construction, No. 105, March (1984).
[7] Shing, P. B. and Mahin, S. A., “Experimental Error Effects in Pseudodynamic Testing” Journal of Engineering Mechanics, ASCE, 116, 805-821 (1990).
[8] Shing, P. B. and Mahin, S. A., “Experimental error propagation in pseudodynamic testing” Earthquake engineering research center, University of California, Berkeley, UCB/EERC-83/12 (1983).
[9] Soong, T. T. and G. F. Dargush, “Passive Energy Dissipation Systems in Structural Engineering.”, Wiley & Sons, New York.(1997).
[10] Stefano, S., Gloria, T., Georges, M., and Francisco, J. M., “Experimental investigation on a base isolation system incorporating steel-Teflon sliders and pressurized fluid viscous spring dampers” Earthquake Engineering and Structural Dynamics, 37, 225-242 (2008).
[11] Takanashi, K. et al., “Nonlinear earthquake response analysis of structures by a computer actuator online system” Transactions Architectural Instruction Japan, 229, 77-83 (1975).
[12] Takanashi, K., “Development of on-line test and its roles in structure engineering study” 擬動態實驗研究講習會,台灣, (1992)。
[13] Wang, Y. P., Lee, C. L., Yo, T. H., “Modified state space procedures for pseudodynmic testing” Earthquake Engineering and Structural Dynamics, 30, 59-80 (2001).
[14] Wang, Y. B., T. Y. Lee and I. C. Tsai, “Dynamic analysis of sliding structures with unsynchronized support motion”, Earthquake Engineering and Structural Dynamics, vol. 29,pp.297-313, (1990).
[15] Zayas, V. A., Low, S. S. and Mahin, S. A., “A simple pendulum technique for achieving seismic isolation.” Earthquake Spectra;6:317–33.(1990).
[16] Zayas, V. A., Low, S. S. and Mahin, S. A., “The FPS earthquake resisting system.” Experimental Report No.UCB/EERC 87/01, EERC, University of California, Berkeley, California.(1987).
[17] 葉士瑋,「最小輸入能量法於勁度可控式隔震系統之應用研究」,國立高雄第一科技大學營建工程研究所,碩士論文,(2009)。
[18] 吳政彥,「變曲率滑動隔震結構之實驗與分析」,國立高雄第一科技大學營建工程研究所,碩士論文,(2004)。
[19] 江子政,「複擺隔震器於防震工程之應用」,逢甲大學土木及水利工程研究所,博士論文,(2004)。
[20] 王彥博,「建築結構之隔震設計─摩擦單擺支承FPS篇」,台灣省土木技師公會6/18中南區結構審查講習會,(2005)。
[21] 張順益、蔡克銓、陳冠州,「對時間積分之運動方程式在擬動態試驗上之應用」,中國土木水利工程學刊,第617-625頁,(1997)。
[22] 羅仕杰,「記憶體共享光纖網路設備於即時擬動態試驗之初步研究」,國立暨南國際大學土木工程研究所,碩士論文,(2005)。
[23] 李明鴻,「應用快速擬動態試驗技術於非線性含斜撐框架動態反應之模擬與試驗」,國立成功大學土木工程研究所,碩士論文,(2006)。
[24] 林憲良,「降伏型非線性構件之慢速擬動態試驗與數值模擬」,國立成功大學土木工程研究所,碩士論文,(2007)。
[25] 張家瑋,「不同加載速率對擬動態試驗誤差的影響」,國立成功大學土木工程研究所,碩士論文,(2008)。
[26] 顏呈璁,「多重取樣量測對擬動態試驗誤差之影響」,國立成功大學土木工程研究所,碩士論文,(2009)。
[27] 吳依寰,「摩擦型阻尼器系統之擬動態試驗與振動台驗證」,國立成功大學土木工程研究所,碩士論文,(2011)。
[28] 曾旭玟,「高分子材料於結構隔震技術之應用」,國立高雄第一科技大學營建工程研究所,碩士論文,(2004)。