| 研究生: |
黃鈺絜 Huang, Yu-Jie |
|---|---|
| 論文名稱: |
氧化石墨烯尺寸對光催化製氫影響之探討 Size Effect on Photocatalytic Activity of Graphene Oxide Dots in Hydrogen Evolution |
| 指導教授: |
鄧熙聖
Teng, Hsi-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 氧化石墨烯 、尺寸影響 、水熱氨化法 、分解水 、產氫 |
| 外文關鍵詞: | graphene oxide, size effect, hydrothermal ammonia treatment, water splitting, hydrogen production |
| 相關次數: | 點閱:68 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來備受關注的替代能源—氫能,為達到永續再利用之願景,以太陽光作為能量進行光催化分解水製氫是有相當有潛力的方式之一,而氧化石墨烯由於本身的結構及特性,將其作為光觸媒應用於光催化分解水領域有其研究價值。由於先前研究利用水熱氨化法於氧化石墨烯表面鍵結含氮官能基造成產氫效能的不同,但並無探討粒子尺寸之光學特性及物理性質對產氫效能的影響,在此將針對這部分進行分析及探究。本研究利用水熱氨化處理法先行製備出含氮官能基之高活性分解水之光觸媒,利用分離系統篩分為不同尺寸之量子點,經由二次水熱氨化處理固定氮基團的含量,利用X光光電子能譜、傅立葉轉換紅外線吸收光譜、紫外光-可見光吸收光譜及拉曼光譜分析進行表面結構及光學性質之鑑定,證明含氮基團中的胺基/醯胺基能有效的縮減能隙、進而增加光吸收外,證實此後處理之方式能使胺基/醯胺基含量趨近一致為本章的重點,量子點尺寸大小之表面型態及電子結構皆對電子之平均生命期有不同程度的影響,使得光催化活性亦有所不同。經由分解水之測試發現二次氨化處理之中間尺寸的量子點(PANGOD30)效率最佳,其效能比氮摻雜氧化石墨烯(NGOD)高將近十幾倍之多,且具有相當高的穩定性,由此可看出粒子尺寸特性是影響分解水效能的重要考量因素之一。
This study mainly discusses how particle size affects the photocatalytic reaction of graphene oxide dots to produce hydrogen from water decomposition. Ammonia-treated nitrogen-doped graphene oxide dots (ANGOD) are synthesized first by treating NGOD and ammonia solution through hydrothermal treatment, and the suspension is flowed through the membranes to obtain three kinds of size of ANGOD. In this work, the samples conducted hydrothermal ammonia treatment again called post hydrothermal ANGOD (PANGOD) can be consistent with the amino functional groups content in three kinds of particle size to exclude the possibility of the influence on nitrogen functionalities. By using analysis of XPS, FTIR, UV-vis, and Raman to check the surface structure and characteristics of the specimens in the different size. By using TRPL to prove the best one (PANGOD30) can prolong the lifetime of electrons, and further improve the hydrogen evolution. The amount of hydrogen generation for the PANGOD30 is more ten times higher than NGOD, showing that size effect is also a significant factor to enhance the performance of water splitting.
[1] Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, vol. 238, 37, 1972.
[2] 張立群譯,“光清淨革命-活躍的二氧化鈦光觸媒”,協志工業叢書出版有限公司,2000.
[3] A. Kudo, H. Kato, and I. Tsuji, “Strategies for the development of visible-light-driven photocatalysts for water splitting”, Chemistry Letters, vol. 33, 1534, 2004.
[4] A. Kudo, “Photocatalyst materials for water splitting”, Catalysis Surveys from Asia, vol. 7, 31, 2003.
[5] A. Mills and S. L. Hnute, “An overview of semiconductor photocatalysis”, Journal of Photochemistry and Photobiology A: Chemistry, vol. 108, 1, 1997.
[6] A. Kudo and Y. Miseki, “Heterogeneous photocatalyst materials for water splitting”, Chemical Society Reviews, vol. 38, 253, 2009.
[7] M. Kitano and M. Hara, “Heterogeneous photocatalytic cleavage of water”, Journal of Materials Chemistry, vol. 20, 627, 2010.
[8] Sayama, K. Mukasa, R. Abe, Y. Abe, and H. Arakawa, “Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3-/I- shuttle redox mediator under visible light irradiation”, Chemical Communications, 2416, 2001.
[9] R. Abe, K. Sayama, and H. Sugihara, “Development of New Photocatalytic Water Splitting into H2 and O2 using Two Different Semiconductor Photocatalysts and a Shuttle Redox Mediator IO3-/I-”, The Journal of Physical Chemistry B, vol. 109, No. 33, 2005.
[10] H. Pan, “Principles on design and fabrication of nanomaterials as photocatalysts for water-splitting”, Renewable and Sustainable Energy Reviews, vol. 57, 584, 2016.
[11] X. Zhang, T. Peng, and S. Song, “Recent advances in dye-sensitized semiconductor systems for photocatalytic hydrogen production”, Journal of Materials Chemistry A, vol. 4, 2402, 2016.
[12] K. Sayama, K. Mukasa, R. Abe, Y. Abe, and H. Arakawa, “A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis”, Journal of Photochemistry and Photobiology A: Chemistry, vol. 148, 71, 2002.
[13] H. Kato, M. Hori, R. Konta, Y. Shimodaira, and A. Kudo, “Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation”, Chemistry Letters, vol. 33, 1348, 2004.
[14] R. Abe, T. Takata, H. Sugihara, and K. Domen, “Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3-/I- shuttle redox mediator”, Chemical Communications, 3829, 2005.
[15] M. Higashi, R. Abe, A. Ishikawa, T. Takata, B. Ohtani, and K. Domen, “Z-scheme Overall Water Splitting on Modified-TaON Photocatalysts under Visible Light (λ< 500 nm)”, Chemistry Letters, vol. 37, 138, 2008.
[16] M. Higashi, R. Abe, K. Teramura, T. Takata, B. Ohtani, and K. Domen, “Two step water splitting into H2 and O2 under visible light by ATaO2N (A= Ca, Sr, Ba) and WO3 with IO3-/I- shuttle redox mediator”, Chemical Physics Letters, vol. 452, 120, 2008.
[17] K. sayama and H. Arakawa, “Effect of carbonate salt addition on the photocatalytic decomposition of liquid water over Pt–TiO2 catalyst”, Journal of the Chemical Society, Faraday Transactions, vol. 93, 1647, 1997.
[18] K. Domen, A. Kudo, T. Onishi, N. Kosugi, and H. Kuroda, “Photocatalytic decomposition of water into hydrogen and oxygen over nickel (II) oxide-strontium titanate (SrTiO3) powder. 1. Structure of the catalysts”, The Journal of Physical Chemistry, vol. 90, 292, 1986.
[19] K. Maeda, K. Terumura, D. Lu, N. Saito, Y. Inoue, and K. Domen, “Noble-metal/Cr2O3 core/shell nanoparticles as a cocatalyst for photocatalytic overall water splitting”, Angewandte Chemie International Edition, vol. 45, 7806, 2006.
[20] J. Highfield, “Advances and Recent Trends in Heterogeneous Photo (Electro)-Catalysis for Solar Fuels and Chemicals”, Molecules, vol. 20(4), 6739, 2015.
[21] M. R. Gholipour, C. T. Dinh, F. Béland, and T. O. Do, “Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting”, Nanoscale, vol. 7, 8187, 2015.
[22] A. Kudo, “Development of photocatalyst materials for water splitting”, International Journal of Hydrogen Energy, vol. 31, 197, 2006.
[23] M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, and M. Anpo, “Photocatalysis for new energy production: Recent advances in photocatalytic water splitting reactions for hydrogen production”, Catalysis Today, vol. 122, 51, 2007.
[24] Y. Matsumoto, U. Unal, N. Tanaka, A. Kudo, and H. Kato, “Electrochemical approach to evaluate the mechanism of photocatalytic water splitting on oxide photocatalysts”, Journal of Solid State Chemistry, vol. 177, 4205, 2004.
[25] J. N. Nian, C. C. Hu, and H. Teng, “Electrodeposited p-type Cu2O for H2 evolution from photoelectrolysis of water under visible light illumination”, International Journal of Hydrogen Energy, vol. 33, 2897, 2008.
[26] Y. Matsumoto, A. Funatsu, D. Matsuo, U. Unal, and K. Ozawa, “Electrochemistry of Titanate(IV) Layered Oxides”, The Journal of Physical Chemistry B, vol. 105, 10893, 2001.
[27] W. Y. Teoh, J. A. Scott, and R. Amal, “Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors”, The journal of physical chemistry letters, vol. 3, 629, 2012.
[28] S. M. Sze and M. K. Lee, “Semiconductor Devices: Physics and Technology, 3rd Edition”, Wiley, 2013.
[29] M. Anderman, J. Kennedy, and H. Finklea, “Semiconductor Electrodes”, Elsevier: New York, 1988.
[30] L. K. Putri, W. J. Ong, W. S. Chang, and S. P. Chai, “Heteroatom doped graphene in photocatalysis: A review”, Applied Surface Science, vol. 358, 2 2015.
[31] Boris M. Smirnov, “Principles of Statistical Physics: Distributions, Structures, Phenomena, Kinetics of Atomic Systems”, Chapter 4, 2007.
[32] B. G. Streetman and S. Banerjee, Solid state electronic devices vol. 5: Prentice Hall New Jersey, 2000.
[33] A. L. Linsebigler, G. Lu, and J. T. Yates Jr, “Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results”, Chemical reviews, vol. 95, 735, 1995.
[34] M.G. Kibria, S. Zhao, F.A. Chowdhury, Q. Wang, H.P.T. Nguyen, M.L. Trudeau, H. Guo, and Z. Mi, “Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting”, Nature Communications, vol. 5, 3825, 2014.
[35] M. Aliofkhazraei, “Electrochemical Methods in Nano, Surface and Corrosion Science”, Chapter 10, 2014.
[36] A. Galińska and J. Walendziewski, “Photocatalytic Water Splitting over Pt−TiO2 in the Presence of Sacrificial Reagents”, Energy & Fuels, vol. 19, No. 3, 1143, 2005.
[37] A. Kudo and H. Kato, “Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting”, Chemical Physics Letters, vol. 331, 373, 2000.
[38] X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang, and Y. Li, “Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting”, Nano Letters, vol. 9, No. 6 ,2331, 2009.
[39] K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells”, Applied Physics Letters, vol. 93, 121904, 2008.
[40] V. K. Kapur, B. M. Basol, and Eric S. Tseng, “Low cost methods for the production of semiconductor films for CuInSe2/CdS solar cells”, Solar Cells, vol. 21, 65, 1987.
[41] H. Kato and A. Kudo, “Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts”, Catalysis Today, vol. 78, 561, 2003.
[42] A. Kudo, R. Niishiro, A. Iwase, and H. Kato, “Effects of doping of metal cations on morphology, activity, and visible light response of photocatalysts”, Chemical Physics, vol. 339, 104, 2007.
[43] R. Abe, K. Sayama, K. Domen, and H. Arakawa, “Efficient hydrogen evolution from aqueous mixture of I− and acetonitrile using a merocyanine dye-sensitized Pt/TiO2 photocatalyst under visible light irradiation”, Chemical Physics Letters, vol. 362, 441, 2002.
[44] X. Chen, S. Shen, L. Guo, and S. S. Mao, "Semiconductor-based photocatalytic hydrogen generation," Chemical reviews, vol. 110, 6503, 2010.
[45] K. Maeda, K. Teramura, N. Saito, Y. Inoue, and K. Domen, “Photocatalytic Overall Water Splitting on Gallium Nitride Powder”, Bulletin of the Chemical Society of Japan, vol. 80, 1004, 2007.
[46] K. Maeda, K. Teramura, T. Takata, M. Hara, N. Saito, K. Toda, Y.Inoue, H. Kobayashi, K. Domen, “Overall Water Splitting on (Ga1-xZnx)(N1-xOx) Solid Solution Photocatalyst: Relationship between Physical Properties and Photocatalytic Activity”, The Journal of Physical Chemistry B, vol. 109, 20504, 2005.
[47] K. Maeda, H. Terashima, K. Kase, and K. Domen, “Nanoparticulate precursor route to fine particles of TaON and ZrO2–TaON solid solution and their photocatalytic activity for hydrogen evolution under visible light”, Applied Catalysis A: General, vol. 357, 206, 2009.
[48] M. Hara, G. Hitoki, T. Takata, J. N. Kondo, H. Kobayashi, and K. Domen, “TaON and Ta3N5 as new visible light driven photocatalysts”, Catalysis Today, vol. 78, 555, 2003.
[49] X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, and C. Li, “Enhancement of Photocatalytic H2 Evolution on CdS by Loading MoS2 as Cocatalyst under Visible Light Irradiation”, Journal of the American Chemical Society, vol. 130, 7176, 2008.
[50] X. Wang, K. Maeda, Y. Lee, and K. Domen, “Enhancement of photocatalytic activity of (Zn1+xGe)(N2Ox) for visible-light-driven overall water splitting by calcination under nitrogen”, Chemical Physics Letters, vol. 457, 134, 2008.
[51] A. Kudo, I. Mikami, “Photocatalytic activities and photophysical properties of Ga2−xInxO3 solid solution”, Journal of the Chemical Society, vol. 94, 2929, 1998.
[52] I. Tsuji, H. Kato, and A. Kudo, “Visible-Light-Induced H2 Evolution from an Aqueous Solution Containing Sulfide and Sulfite over a ZnS–CuInS2–AgInS2 Solid-Solution Photocatalyst”, Angewandte Chemie International Edition, vol. 44, 3565, 2005.
[53] S. Yanagida, A. Kabumoto, K. Mizumoto, C. Pac, and K. Yoshino, “oly (p-phenylene)-catalysed photoreduction of water to hydrogen”, Journal of the Chemical Society, Chemical Communications, pp. 474-475, 1985.
[54] A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nature materials, vol. 6, 183, 2007.
[55] W. Gao, L. B. Alemany, L. Ci, and P. M. Ajayan, “New insights into the structure and reduction of graphite oxide”, Nature chemistry, vol. 1, 403, 2009.
[56] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, et al., “A metal-free polymeric photocatalyst for hydrogen production from water under visible light”, Nature materials, vol. 8, 76, 2009.
[57] R. Ströbel, J. Garche, P. T. Moseley, L. Jörissen, and G. Wolf, “Hydrogen storage by carbon materials”, Journal of Power Sources, vol. 159, 781, 2006.
[58] F. Valencia, A. H. Romero, F. Ancilotto, and P. L. Silvestrelli, “Lithium Adsorption on Graphite from Density Functional Theory Calculations”, The Journal of Physical Chemistry B, vol. 110, 14832, 2006.
[59] N. B. Hannay, T. H. Geballe, B. T. Matthias, K. Andres, P. Schmidt, and D. MacNair, “Superconductivity in graphitic compounds”, Physical Review Letters, vol. 14, 225, 1965.
[60] T. F. Yeh, F. F. Chan, C. T. Hsieh, and H. Teng, “Graphite Oxide with Different Oxygenated Levels for Hydrogen and Oxygen Production from Water under Illumination: The Band Positions of Graphite Oxide”, The Journal of Physical Chemistry C, vol. 115, 22587, 2011.
[61] J. Li, X. Zeng, T. Ren, and E. Van Der Heide, “The Preparation of Graphene Oxide and Its Derivatives and Their Application in Bio-Tribological Systems”, Lubricants, vol. 2, 137, 2014.
[62] G. W. Morey, “Hydrothermal Synthesis”, Journal of the American Ceramic Society, vol. 36, 279, 1953.
[63] S. Somiya, K. Ioku, and M. Yoshimura, “Hydrothermal Synthesis and Characterization of Fine Apatite Crystals”, Materials Science Forum, vol. 34-36, 371, 1988.
[64] L. M. Demyanets and A. N. Lobachev, “Crystallization Processes under Hydrothermal Conditions”, Consaltant Bureau, London press, 1973.
[65] T. F. Yeh, J. M. Syu, C. Cheng, T. H. Chang, and H. Teng, “Graphite Oxide as a Photocatalyst for Hydrogen Production from Water”, Advanced Functional Materials, vol. 20, 2255, 2010.
[66] T. F. Yeh, S. J. Chen, C. S. Yeh, and H. Teng, “Tuning the Electronic Structure of Graphite Oxide through Ammonia Treatment for Photocatalytic Generation of H2 and O2 from Water Splitting”, The Journal of Physical Chemistry C, vol. 117, 6516, 2013.
[67] X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H.Dai, “N-Doping of Graphene Through Electrothermal Reactions with Ammonia”, Science, vol. 324, 768, 2009.
[68] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, “Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties”, Nano Letters, vol. 9, No. 5, 1752, 2009.
[69] T. F. Yeh, C.Y. Teng, S. J. Chen, and H. Teng, “Nitrogen-Doped Graphene Oxide Quantum Dots as Photocatalysts for Overall Water-Splitting under Visible Light Illumination”, Advanced Materials, vol. 26, 3297, 2014.
[70] X. Y. Zhang, H. P. Li, X. L. Cui, and Y. Lin, “Graphene/TiO2 nanocomposites : synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting”, Journal of Materials Chemistry, vol. 20, 2801, 2010.
[71] H. Kato, K. Asakura, and A. Kudo, “Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure”, Journal of the American Chemical Society, vol. 125, 3082, 2003.
[72] E. B. Muller, A. H. Stouthamer, H. W. van Verseveld, and D.H. Eikelboom, “Aerobic domestic waste water treatment in a pilot plant with complete sludge retention by cross-flow filtration”, Water Research, vol. 29, 1179, 1995.
[73] D. Williams, and C. B. Carter, “Transmission Electron Microscopy. 1 – Basics”, 1996.
[74] 田大昌、陳俊榮、謝孟婷、黃啓貞、蔡玲娜、孫亞君、林麗娟,“光電子能階分析在奈米有機半導體上之應用”,工業材料雜誌,251期,2007。
[75] P. Larkin, “Infrared and Raman spectroscopy: principles and special interpretation,” Elsevier, 2010.
[76] D. G. Barton, M. Shtein, R. D. Wilson, S. L. Soled, and E. Iglesia, “Structure and Electronic Properties of Solid Acids Based on Tungsten Oxide Nanostructures”, The Journal of Physical Chemistry B, vol. 103, 630, 1999.
[77] E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari and M. S. Feld, “Prospects for in vivo Raman spectroscopy”, Physics in Medicine & Biology, vol. 45, 2000.
[78] A. Nevin, A. Cesaratto, S. Bellei, C. D’Andrea, L. Toniolo, G. Valentini and D. Comelli, “Time-Resolved Photoluminescence Spectroscopy and Imaging: New Approaches to the Analysis of Cultural Heritage and Its Degradation”, Sensors, vol. 14, 6338, 2014.
[79] S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials”, Nature, vol. 442, 282, 2006.
[80] S. Park, J. An, R. D. Piner, I. Jung, D. Yang, A. Velamakanni, S. T. Nguyen, and R. S. Ruoff, “Aqueous Suspension and Characterization of Chemically Modified Graphene Sheets”, Chemistry of Materials, 20, vol. 6592, 2008.
[81] D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, “Control of Graphene’s Properties by Reversible Hydrogenation: Evidence for Graphane”, Science, vol. 323, 610, 2009.
[82] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia , Y. Wu, S. T. Nguyen, and R. S. Ruof, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide”, Carbon, vol. 45, 1558, 2007.
[83] H. He and C. Gao, “General Approach to Individually Dispersed, Highly Soluble, and Conductive Graphene Nanosheets Functionalized by Nitrene Chemistry”, Chemistry of Materials, vol. 22, No. 17, 5054, 2010.
[84] R. Rozada, J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “Towards full repair of defects in reduced graphene oxide films by two-step graphitization”, Nano Research, vol. 6, 216, 2013.
[85] S. R. Kelemen, M. Afeworki, M. L. Gorbaty, P. J. Kwiatek, M. S. Solum, J. Z. Hu, and R. J. Pugmire, “XPS and 15N NMR Study of Nitrogen Forms in Carbonaceous Solids”, Energy & Fuels, vol. 16, 1507, 2002.
[86] R. Pietrzak, “XPS study and physico-chemical properties of nitrogen-enriched microporous activated carbon from high volatile bituminous coal”, Fuel, vol. 88, 1871, 2009.
[87] H. Wang, T. Maiyalagan, and X. Wang, “Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications”, ACS Catalysis, vol. 2, 781, 2012.
[88] T. F. Yeh, S. J. Chen, and H. Teng, “Synergistic effect of oxygen and nitrogen functionalities for graphene-based quantum dots used in photocatalytic H2 production from water decomposition”, Nano Energy, vol. 12, 476, 2015.
[89] B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, and J. R. Gong, “Controllable N-Doping of Graphene”, Nano Letters, vol. 10, 4975, 2010
[90] L. C. Chen, C. Y. Teng, C. Y. Lin, H. Y. Chang, S. J. Chen, and H. Teng, “Architecting Nitrogen Functionalities on Graphene Oxide Photocatalysts for Boosting Hydrogen Production in Water Decomposition Process”, Advanced Energy Materials, vol. 6, 1600719, 2016.
[91] S. Wang, D. Yu, L. Dai, D. W. Chang, and J. B. Baek, “Polyelectrolyte-Functionalized Graphene as Metal-Free Electrocatalysts for Oxygen Reduction”, ACS Nano, vol. 5, 6202, 2011.
[92] J. Ryu, E. Lee, S. Lee, and J. Jang, “Fabrication of graphene quantum dot-decorated graphene sheets via chemical surface modification”, Chemical Communications, vol. 50, 15616, 2014.
[93] E. F. d. Reisa, F. S. Campos, A. P. Lagea, R. C. Leitea, L. G. Heneineb, W. L. Vasconcelosc, Z. I. P. Lobatoa, H. S. Mansur, “Synthesis and Characterization of Poly (Vinyl Alcohol) Hydrogels and Hybrids for rMPB70 Protein Adsorption”, Materials Research, vol. 9, No. 2, 185, 2006.
[94] H. Tetsuka, R. Asahi, A. Nagoya, K. Okamoto, I. Tajima, R. Ohta, and A. Okamoto, “Optically Tunable Amino-Functionalized Graphene Quantum Dots”, Advanced Materials, vol. 24, 5333, 2012.
[95] H. Tetsuka, A. Nagya, and R. Asahi, “Highly luminescent flexible amino-functionalized graphene quantum dots@cellulose nanofiber–clay hybrids for white-light emitting diodes”, Journal of Materials Chemistry C, vol. 3, 3536, 2015.
[96] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes”, Nature, vol. 457, 706, 2009.
[97] A. C. Ferrari,1, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers”, Physical Review Letters, vol. 97, 187401, 2006.
[98] H. Liu, Y. Liu and D. Zhu, “Chemical doping of graphene”, Journal of Materials Chemistry, vol. 21, 3335, 2011.
[99] A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K. S. Novoselov, and C. Casiraghi, “Probing the Nature of Defects in Graphene by Raman Spectroscopy”, Nano Letters, vol. 12, 3925, 2012.
[100] K. Ganesan, S. Ghosh, N. G. Krishna, S. Ilango, M. Kamruddin, and A. K.Tyagi, “A comparative study on defect estimation using XPS and Raman spectroscopy in few layer nanographitic structures”, Physical Chemistry Chemical Physics, vol. 18, 22160, 2016.
[101] X. Xu, Z. Bao, G. Zhou, H. Zeng, and J. Hu, “Enriching Photoelectrons via Three Transition Channels in Amino-Conjugated Carbon Quantum Dots to Boost Photocatalytic Hydrogen Generation”, ACS Applied Materials & Interfaces, vol. 8, 14118, 2016.