簡易檢索 / 詳目顯示

研究生: 陳韋甫
Chen, Wei-Fu
論文名稱: 聚矽氧烷混成型燃料電池高分子質子傳導膜之合成與鑑定
Preparation and Characterization of Polysiloxane-Hybrid Proton Conducting Polymer Membranes for Fuel Cells
指導教授: 郭炳林
Kuo, Ping-Lin
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 123
中文關鍵詞: 聚矽氧烷Nafion質子傳導膜燃料電池
外文關鍵詞: polysiloxanes, Nafion, composite, proton conducting membranes, fuel cells
相關次數: 點閱:75下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Four kinds of cross-linked composite membranes has been developed via sol-gel chemistry from commercial poly(allylamine), modified polysiloxanes composed of 4,4’-methtlenedianiline and poly(vinylimidazole) classes, and polysiloxane-functionalized multiwall carbon nanotubes.
    The following membrane types have been studied: (i) Polysiloxane/ poly(allylamine) hybrid doping with ortho-phosphoric acid. This membrane type possesses a double-crosslinked framework which interacts with H3PO4 by hydrogen bonding and/or electrostatic forces, resulting in high conductivity of 10-3 S/cm up to 130 oC under dry atmosphere. (ii) Triply cross-linked hybrids by blending Nafion with a covalently cross-linked aromatic-type polysiloxane. This membrane type showed a hydrophilic/hydrophobic microphase separation, leading to an ultra low methanol permeability (1×10-8 cm2/s) and good proton conductivity (0.034 S/cm). (iii) A functionalized carbon nanotube / Nafion nanocomposite by covalently grafting hydrophilic layers composed of polyoxyalkylenediamines and TEOS-reinforced polysiloxane in a layer-by-layer manner onto tube walls. The hydroxyl and amino functionalities, and silica nodes allow the formation of a bound water layer that facilitates the hopping of protons (iv) A cross-linked acid-base blends by mixing perfluorosulfonated polymer with a polymeric imidazole derivatives. Membranes showing excellent methanol resistivity, good conductivity and stability. The above membrane types were extensively characterized in order to understand how the microstructure of the composite membrane affects its hydro-characteristics and performance.
    The H3PO4 doped polysiloxane/ poly(allylamine) membrane which possesses an amine-contained cross-linked framework binding with the doped H3PO4 and the polyalkylenendiamine- -functionalized CNT / Nafion composite membrane both show the characteristics of high proton conductivity especially in a high temperature range (up to 130 oC). These two membrane types should have the potential for application in medium temperature fuel cells (90~ 130 oC). The triply cross-linked polysiloxane/ Nafion membrane and the poly(vinylimidazole)-functionalized polysiloxane / Nafion membrane both showed ultra low methanol permeability and adequate proton conductivity, which should be qualified for DMFC application.

    ABSTRACT 6 CHAPTER I INTRODUCTION 13 1.1 The Reasons behind Fuel Cell Development 13 1.2 Polymer Exchange Membrane Fuel Cells 13 1.3 Proton Exchange Membranes 14 1.4 Composite Proton Exchange Membranes 17 1.5 Research Motives 19 CHAPTER II THEOREMS 23 2.1 Basic Concept of Proton Exchange Membrane Fuel Cells 23 2.2 Water Management in the Membrane 25 2.3 Direct Methanol Fuel Cells 26 2.4 Parameters of Proton Exchange Membranes 27 2.5 Morphology and transport properties of PEM 29 2.5 Alternating Current Measurements 32 2.5.1 Idealized electrolytes with blocking electrodes 34 2.5.2 The complexities of real electrolytes 35 CHAPTER III EXPERIMENTAL SECTION 38 3.1 Materials 38 3.2 Sample Preparation 38 3.2.1 Preparation of poly(allylamine)/poly(siloxane)membranes 38 3.2.2 Synthesis of triply cross-linked polysiloxane/Nafion membranes 39 3.2.3 Preparation of polyoxyalkylenediamine-functionalized carbon nanotubes 39 3.2.4 Preparation of CNT-EO/Nafion and polysiloxane-modified CNT/Nafion membranes 40 3.2.5 Synthesis of siloxane-terminated poly(vinylimidazole), M(VI)n 40 3.2.6 Preparation of M(VI)n Membranes 41 3.3 Characterizations 41 3.3.1 ATR-FTIR spectroscopy 41 3.3.2 DSC Analysis 41 3.3.3 TGA Analysis 42 3.3.4 Proton Conductivity Measurements 42 3.3.5 Solid-state NMR 42 3.3.6 Ion-Exchange Capacity (IEC) 43 3.3.7 X-ray Photoelectron Spectroscopy 43 3.3.8 Methanol Permeability 43 3.3.9 Oxidative stability 44 3.3.10 Preparation of Membrane Electrode Assembly (MEA) 44 CHAPTER IV RESULTS AND DISCUSSION 45 4.1 Organic-Inorganic Hybrid Polymer Electrolyte based on Polysiloxane/ Poly(allylamine) Network 45 4.1.1 Preparation of double-crosslinked polymer electrolytes 46 4.1.2 DSC and TGA Studies 46 4.1.3 31P MAS Solid-State NMR 48 4.1.4 Proton Conductivity Measurements 52 4.1.5 Water Uptake 58 4.2 Covalently Cross-linked Perfluorosulfonated Membranes with Polysiloxane Framework 60 4.2.1 Preparation of Cross-linked Polysiloxane-Nafion Membranes 61 4.2.2 Microscopic characterization 63 4.2.3 Ionic cross-linking between Nafion and the covalently cross-Linked polysiloxane 65 4.2.4 Swelling Behavior 67 4.2.5 State of Water 69 4.2.6 Proton Conductivity Measurements 71 4.2.7 Methanol Permeability 72 4.2.8 Oxidation Stability 74 4.2.9 Single-cell Performance 75 4.3 Polyoxyalkylenediamine-Functionalized Carbon Nanotubes/ Perfluorosulfonated Polymer Composites 76 4.3.1 Preparation of Covalently Cross-Linked Polysiloxane-Nafion Membranes 76 4.3.2 Synthesis of polyoxyalkylenediamine-functionalized carbon nanotubes 77 4.3.3 Morphology of functionalized CNT/Nafion composite membranes 81 4.3.4 Interaction between CNT-EO and Nafion 83 4.3.5 Water uptake 87 4.3.6 State of water 88 4.3.7 Electron and proton conductivity measurements 91 4.3.8 Oxidation Stability 95 4.4 Perfluorosulfonated Ionomers / Poly(vinylimidazole)-Functionalized Polysiloxane Composite Membranes 96 4.4.1 Preparation of Polyvinylimidazole-Functionalized Polysiloxane-Nafion Membranes 96 4.4.2 Interaction between Nafion and M(VI)n 100 4.4.3 Water Uptake 103 4.4.4 State of Water 104 4.4.5 Proton Conductivity Measurements 106 4.4.6 Methanol Permeability 109 4.4.7 Oxidation Stability 110 4.4.8 Single DMFC Performance 111 CHAPTER V CONCLUSIONS 112 ACKNOWLEDGEMENT 121

    1. Rikukawa, M.; Sanui, K. Prog. Polym. Sci. 2000, 25, 1463.
    2. Hsu, W. Y.; Gierke, T. D. J. Membr. Sci. 1983, 13, 307.
    3. Jannasch, P. Current Opinion in Colloid and Interface Science 2003, 8, 96.
    4. Doyle, M.; Rajendran, G. In Handbook of Fuel cells-Fundamentals, Technology and Applications, Vielstich, W; Gasteiger, H. A.; Lamm, A., Eds.; Wiley: West Sussex, 2003, vol. 3, Chapter 30, p 351.
    5. Li, Q. F.; He, R. H.; Jensen, J. O.; Bjerrum, N. J. Chem. Mater. 2003, 15, 4896.
    6. Senadeera, G. K. R.; Careem, M. A.; Skaarup, S.; West, K. Solid State Ionics 1996, 85, 37.
    7. James, L.; Andrew, D. Fuel Cell Explained, John Weiley, England, 2003.
    8. Yang, Z. Y.; Rajendran, R.G. Angew. Chem. Int. Ed. 2005, 44, 564.
    9. Kauranen, P. S.; Skou, E. J. Appl. Electrochem. 1996, 26, 909.
    10. Narayanan, S. R.; Kindler, A.; Jeffries-Nakamura, B.; Chun, W.; Frank, H.l Smart, M.; Valdez, T. I.; Surampudi, S.; Halpert, G. Annu. Battery Cnf. Appl. Adv. 1996, 11, 113.
    11. Ding, J.; Chuy, C.; Holdcroft, S. Adv. Funct. Mater. 2002, 12, 389.
    12. Lafitte, B.; Karlsson, L. E.; Jannasch, P. Macromol. Rapid Commun. 2002, 23, 896.
    13. Yamaguchi, T.; Miyata, F.; Nakao, S.-i. Adv. Mater. 2003, 15, 1198.
    14. Souzy, R.; Ameduri, B.; Boutevin, B.; Capron, P.; Marsacq, D.; Gebel, G. Fuel Cells 2005, 5, 383.
    15. Yang, Z. Y.; Rajendran, R. G. Angew. Chem. Int. Ed. 2005, 44, 564.
    16. Gubler, L.; Grsel, S. A.; Scherer, G. G. Fuel Cells 2005, 5, 317.
    17. Bauer, B.; Jones, D. J.; Roziere, J.; Tchicaya, L.; Alberti, G.; Casciola, M.; Massinelli, I.; Peraio, A.; Besse, S.; Ramunni, E. J. New Materials for Electrochemical Systems 2000, 3, 93.
    18. Peled, E.; Duvdevani, T.; Aharon, A.; Melman, A. Electrochem. Solid-State Lett. 2000, 3, 525.
    19. Hietala, S.; Koel, M.; Skou, E.; Elomaa, M.; Sundholm, F. J. Mater. Chem. 1998, 8, 1127.
    20. Aric, A. S.; Antonucci, P. L.; Giordano N.; Antonucci, V. Material Letters 1995, 24, 399.
    21. Fu, Y. Z.; Manthiram, A. J. Power Source 2006, 157, 222.
    22. Wang, F.; Hickner, M.; Kim, Y. S.; Zawodzinski, T. A.; McGrath, J. E. J. Membr. Sci. 2002, 197, 231.
    23. Staiti, P.; Lufrano, F.; Arico, A. S.; Passalacqua, E.; Antonucci, V. J. Membr. Sci. 2001, 188, 71.
    24. Farhat, T. R.; Hammond, P. T. Adv. Funct. Mater. 2005, 15, 945.
    25. Deng, W. Q.; Molinero, V.; Goddard, W. A. III J. Am. Chem. Soc. 2004, 126, 15644.
    26. Manea, C.; Mulder, M. J. Membr. Sci. 2002, 206, 443.
    27. Park, J. S.; Park, J. W.; Ruckenstein, E. Polymer 2001, 42, 4271.
    28. Depre, L.; Ingram, M.; Poinsignon, C.; Popall, M. Electrochim. Acta 2000, 45, 1377.
    29. Kerres, J. A. J. Membr. Sci. 2001, 185, 3.
    30. Mikhailenko, S. D.; Wang, K.; Kaliaguine, S.; Xing, P.; Robertson, G. P.; Guiver, M. D. J. Membr. Sci. 2004, 233, 93.
    31. Kerres, J. A. Fuel Cells 2005, 5, 230.
    32. Deimede, V.; Voyiatzis, G. A.; Kallitsis, J. K.; Qingfeng, L.; Bjerrum, N. J. Macromolecules 2000, 33, 7609.
    33. Tan, S.; Belanger, D. J. Phys. Chem B 2005, 109, 23480.
    34. Yin, Y.; Hayashi, S.; Yamada, O.; Kita, H.; Okamoto, K. I. Macromolecular Rapid Communications 2005, 26, 696.
    35. Lee, C. H.; Park, H. B.; Chung, Y. S.; Lee, Y. M.; Freeman, B. D. Macromolecules 2006, 39, 755.
    36. Kerres, J.; Zhang, W.; Cui, W. J. Polym. Sci. Part A: Polym. Chem. 1998, 36, 1441.
    37. Nakajima, H.; Honma, I. Solid State Ionics 2002, 148, 607.
    38. Staiti, P., Minutoli, M., J. Power Sources 2001, 94, 9.
    39. Amarilla, J. M.; Rojas, R. M.; Rojo, J. M.; Cubillo, M. J.; Linares, A.; Acosta, J. L. Solid State Ionics 2000, 127, 133.
    40. Genova-Dimitrova, P., Baradie, B., Foscallo, D., Poinsignon, C., Sanchez, J. Y., J. Membr. Sci. 2001, 185, 59.
    41. Nunes, S. P.; Ruffmann, B.; Rikowski, E.; Vetter, S.; Richau, K. J. Membr. Sci. 2002, 203, 215.
    42. Halla, J. D.; Mamak, M.; Williams, D. E.; Ozin, G. A. Adv. Funct. Mater. 2003, 13, 133.
    43. Bronstein, L. M.; Joo, C.; Karlinsey, R., Ryder, A.; Zwanziger, J. W. Chem. Mater. 2001, 13, 3678.
    44. Liang, W. J.; Kuo, P. L. J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 151.
    45. Carrette, L.; Friedrich, K. A.; Stimming, U. Fuel Cells 2001, 1, 5.
    46. Kordesch, K. and Simader, G. Fuel Cells and Their Applications; 1 ed.; VCH Verlagsgesellschaft mbH: Weinheim, Germany, 1996.
    47. Watanabe, M.; Uchida, H.; Seki, Y. Emori, M. J. Electrochem. Soc. 1996, 143, 3847.
    48. Hickner, M.; Ghassemi, H.; Kim, Y. S.; Einsla, B. R.; McGrath, J. E. Chem. Rev. 2004, 104, 4587.
    49. Roziere, J. Jones, D. Annu. Rev. Mater. Res. 2003, 33, 503.
    50. Makoto, T.; Shunichi, I.; Hirotaka, I.; Zhenghe, X. Chem. Mater. 2004, 16, 1977.
    51. Asano, N.; Aoki, M.; Suzuki, S.; Miyatake, K.; Uchida, H.; Watanabe, M. J. Am. Chem. Soc. 2006, 128, 1762.
    52. Gebel, G. Polymer, 2000, 41, 5829.
    53. Gierke, T. D.; Munn, G. E.; Wilson, F. C. J. Polym. Sci.: Polymer Physic 1981, 19, 1687.
    54. Rubatat, L.; Rollet, A. L.; Gebel, G.; Diat, O. Macromolecules 2002, 35, 4050.
    55. Zawodzinski, T. A.; Neeman, M.; Sillerud, L. O.; Gottesfed, S. J. Phys. Chem. 1991, 95, 6040.
    56. Zawodzinski, T. A.; Derouin, C.; Radzinski, S.; Sherman, R. J.; Smith, V. T.; Springer, T. E.; Gottesfeld, S. J. Electrochem Soc. 1993, 140, 1041.
    57. Zawodzinski, T. A.; Davey, J.; Valereo, J.; Gottesfeld, S. Electrochim. Acta 1995, 40, 297.
    58. Qiao, J.; Hamaya, T.; Okada, T. Chem. Mater. 2005, 17, 2413.
    59. Zawodzinski, T. A.; Neeman, M.; Sillerud, L. O.; Gottesfeld, S. J. Phys. Chem. 1991, 95, 6040.
    60. Nakamura, K.; Hatakeyama, T.; Hatakeyama, H. polymer 1983, 24, 871.
    61. Ostrovskii, D. I.; Torell, L. M.; Paronen, M.; Hietala, S.; Sundholm, F. Solid State Ionics 1997, 97, 315.
    62. Senadeera, G. K. R.; Careem, M. A.; Skaarup, S.; West, K. Solid State Ionics 1996, 85, 37.
    63. Liang, W. J.; Kuo, P. L. J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 151.
    64. Bozkurt, A.; Meyer, W. H. Solid State Ionics 2001, 138, 259.
    65. Chęckiewicz, K.; Żukowska, G.; Wieczorek, W. Chem. Mater. 2001, 13, 379.
    66. Matsuda, A.; Kanzaki, T.; Tatsumisago, M.; Minami, T. Solid State Ionics 2001, 145, 161.
    67. Wieczorek, W.; Żukowska, G.; Ostrovskii, D.; Florjańczyk, Z. J. Phys. Chem. B 2001, 105, 9686.
    68. Wasmus, S.; Valeriu, A.; Mateescu, G. D.; Tryk, D. A.; Savinell, R. F. Solid State Ionics 1995, 80, 87.
    69. Dillon, K. B.; Waddington, T. C. J. Chem. Soc. A 1970, 1146.
    70. Hisazumi, Y.; Waki, H.; Ohashi, S. J. Inorg. Nucl. Chem. 1977, 39, 1615.
    71. Olah, G. A.; McFarland, C. W. J. Org. Chem. 1971, 36, 1374.
    72. Fernandes-Lorenzo, C.; Esquivias, L.; Barboux, P.; Maquet, J.; Taulelle, F. J. Non-Crys. Solids 1994, 176, 189.
    73. Żukowska, G.; Chojnacka, N.; Wieczorek, W. Chem. Mater. 2000, 12, 3578.
    74. Kreuer, K. D. Chem. Mater. 1996, 8, 610.
    75. Kreuer, K. D. Solid State Ionics 2000, 136-137, 149.
    76. Liang, W. J.; Kuo, P. L. Macromolecules 2004, 37, 840.
    77. Liang, W. J.; Chen, Y. P.; Wu, C. P.; Kuo, P. L. J. Phys. Chem. B 2005, 109, 24311.
    78. Liang, W. J., Wu, C. P., Hsu, C. Y., Kuo, P. L. J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 3444.
    79. Liang, W. J.; Kao, H. M.; Kuo, P. L. Macromol. Chem. & Phys 2004, 205, 600.
    80. Kuo, P. L.; Hou, S. S.; Lin, C. Y., Chen, C. C.; Wen, T. C., J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 2051.
    81. Kuo, P. L.; Chen,W. F.; Liang, W. J. J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 3359.
    82. Zawodzinski, T. A.; Springer, T. E.; Davey, J.; Jestel, R.; Lopez, C.; Valerio, J.; Gottesfeld, S. J. Electrochem. Soc. 1993, 140, 1981.
    83. Kim, Y. S.; Dong, L.; Hickner, M. A.; Glass, T. E.; Webb, V.; McGrath, J. E. Macromolecules 2003, 36, 6281.
    84. Andrews, R.; Jacques, D. Qian, D.; Rantell, T. Acc. Chem. Res. 2002, 35, 1008.
    85. Sun, Y.-P.; Fu, K; Lin, Y.; Huang, W. Acc. Chem. Res. 2002, 35, 1096.
    86. Ajayan, P. M. Chem. Rev. 1999, 99, 1787.
    87. Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; Colbert, D. T.; Scuseria, G. E.; Tomnek, D.; Fischer, J. E.; Smalley, R. E. Science 1996, 273, 483.
    88. Holzinger, M.; Vostrowsky, O.; Hirsh, A.; Hennrich, F.; Kappes, M.; Weiss, R.; Jellen, F. Angew. Chem., Int. Ed. 2001, 40, 4002.
    89. Riggs, J. E.; Guo, Z.; Carroll, D. L.; Sun, Y.-P. J. Am. Chem. Soc. 2000, 122, 5879.
    90. Zhu, J.; Yudasaka, M.; Zhang, M.; Kasuya, D.; Iijima, S. Nano Lett. 2003, 3, 1239.
    91. Tasis, D.; Tagmatarchis, Nikos; Bianco, Alberto; Prato, Maurizio Chem. Rev. 2006, 106, 1105.
    92. Moore, V. C.; Strano, M. S.; Haroz, E. H.; Hauge, R. H.; Smalley, R. H. Nano Lett. 2003, 3, 1379.
    93. Matarredona, O.; Rhoads, H.; Li, Z.; Harwell, J. H.; Balzano, L.; Resasco, D. E. J. Phys. Chem. B 2003, 107, 13357.
    94. Yurekli, K.; Mitchell, C. A.; Krishnamoorti, R .J. Am. Chem. Soc. 2004, 126, 9902.
    95. Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B. Science 2002, 298, 2361.
    96. O’Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C.; Ma, J.; Hauge, R. H.; Weisman, R. B.; Smalley, R. E. Science 2002, 297, 593.
    97. Landi, B. J.; Raffaelle, R. P.; Heben, M. J.; Alleman, J. L.; VanDerveer, W.; Gennett, T. Nano Lett. 2002, 2, 1329.
    98. Wang, J.; Musameh, M.; Lin, Y. J. Am. Chem. Soc. 2003, 125, 2408.
    99. Olek, M.; Kempa, K.; Jurga, S.; Giersig, M. Langmuir 2005, 21, 3146.
    100. Liu, J.; Rinzler, A. G.; Dai, H.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B.; Rodriguez- Macias, F.; Shon, Y.-S.; Lee, T. R.; Colbert, D. T.; Smalley, R. E. Science 1998, 280, 1253.
    101. Hull, R. V.; Li, L.; Xing, Y.; Chusuei, C. C. Chem. Mater. 2006, 18, 1780-1788.
    102. Moulder, J. F.; Stick, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectro Spectroscopy, Perkin-Elmer: Eden Prairie, MN, 1992.
    103. Sharma, J.; Mahima, S.; Kakade, A. B.; Pasricha, R.; Mandale, A. B.; Vijayamohanan, K. J. Phys. Chem. B 2004, 108, 13280-13286.
    104. Haimov, A.; Cohen, H.; Neumann, R. J. Am. Chem, Soc. 2004, 126, 11762-11763.
    105. Lowry, S. R.; Mauritz, K. A. J. Am. Chem. Soc. 1980, 102, 4665.
    106. Lage, L. G.; Delgado, P. G.; Kawano, Y. Eur. Polym. J. 2004, 40, 1309.
    107. Park, H. S.; Kim, Y. J.; Hong, W. H.; Choi, Y. S.; Lee, H. K. Macromolecules 2005, 38, 2289.
    108. Tannenbaum, R.; Rajagopalan, M.; Eisenberg, A. J. Polym. Sci. Part B: Polym. Phys. 2003, 41, 1814.
    109. Bae, B.; Kim, D.; Kim, H.-J.; Lim, T.-H.; Oh, I.-H.; Ha, H. Y. J. Phys. Chem. B, 2006, 110, 4240.
    110. Wrbel, A. M.; Walkiewicz-Pietrzykowska, A.; Klemberg-Sapieha, J. E.; Nakanishi, Y.; Aoki, T.; Hatanaka, Y. Chem. Mater. 2003, 15, 1749.
    111. Miyatake, K.; Oyaizu, K.; Tsuchida, E.; Hay, A. S. Macromolecules 2001, 34, 2065.
    112. Almeida, S. H.; Kawano, Y. J. Therm. Anal. Calorim. 1999, 58, 569.
    113. Park, H. S.; Kim, Y. J.; Hong, W. H.; Lee, H. K. J. Memb. Sci. 2006, 272, 28.
    114. Moore El, B. R.; Martin, C. R. Macromolecules 1989, 22, 3549.
    115. Takafuji, M.; Ide, S.; Ihara, H.; Xu, Z. Chem Mater. 2004, 16, 1977.

    下載圖示 校內:2010-02-24公開
    校外:2010-02-24公開
    QR CODE