| 研究生: |
李光麗 Lee, Kuang-Lee |
|---|---|
| 論文名稱: |
CuInS2量子點敏化二氧化鈦奈米管陣列之光伏反應 CuInS2 Quantum Dot Sensitized TiO2 Nanotube Arrays as Photoelectrode for Photovoltaic Reactions |
| 指導教授: |
鄧熙聖
Teng, Hsisheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 二氧化鈦奈米管 、溶熱法 、CuInS2 、(CuIn)xZn2(1-x)S2 |
| 外文關鍵詞: | TiO2 nanotube, solvothermal, CuInS2, (CuIn)xZn2(1-x)S2 |
| 相關次數: | 點閱:82 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究室已發展利用CuInS2 奈米粒子敏化二氧化鈦奈米顆粒,進行光伏反應的測試,而本實驗目的是期盼能提升其光電性質。由於二氧化鈦奈米管結構有高的结晶度,相較於傳統的二氧化鈦奈米粒子可提供更好的電子運輸的容量比率,會有利於電子傳遞,另一方面藉由摻雜鋅到CuInS2 奈米粒子提升奈米粒子的吸光效率,期盼提高吸收光的效率後,可以有更多的電子被光激發後產生。結合量子點敏化二氧化鈦奈米管,可涵蓋整個可見光範圍,使其可更有效率的將太陽能轉換成分解水。將“CuInS2/ (CuIn) xZn2(1-x)S2奈米管”的複合材料,進行光電性質的分析與討論,並搭配紫外與可見光譜、光致螢光光譜,觀察光學效果的特性。
實驗首先使用溶熱法合成出CuInS2 量子點,而二氧化鈦奈米管則是採用陽極氧化的方式獲得。當溶熱溫度是110℃的CIS量子點敏化二氧化鈦奈米管之光伏反應,會有最高的光電流約 2 mA/cm2,為了有更好的光電流表現,將鋅摻入CIS量子點系統,除了PL強度提升四倍之多,光電流亦提高至2.7 mA/cm2。
Our laboratory had already synthesized colloidal CuInS2 nanoparticles via solvothermal method under lower temperature, which was employed as sensitizers for photoelectrochemical cells while using TiO2 nanaoparticle as electron conductor. In this study, try to improve the photoresponcse under visible light illumination though changing the TiO2 nanoparticle to the TiO2 nanotube and doping zinc into CuInS2 quantum dot (QD).
Compare to nanoparticle, nanotube structures has higher degree of crystallinity and high surface area to volume ratio which provides better electron transport, so we focus our research on using nanotube as electron conductor. On the other hand, introduction of Zn into CuInS2 system can enhance the photoluminescence(PL) intensity and the band gap can be tuned while changing the solvothermal temperature or altering the concentration of zinc. Higher PL strength of doping Zn into CIS system had been confirmed, which can improve the photoresponse, however, is the topic of this work.
From this experiment, after find out the optima tube length for loading quantum dot, discuss the optical properties, band gap energy, and PL intensity of chalcopyrite-type nanocystals. Finally, discuss the results of photovoltaic reaction.
參考文獻
[1] T.L. Li, H.S.Teng , Journal of materials Chemistry, 20,
3656-3664 , 2010
[2] H . Nakamura , W . Kato; M .Uehara , Chem. Mater. ,18 ,3330-3335 ,2006
[3] R. L. Kurtz, R. Stockbauer , T. E. Maday , E .Roman and J.L de
Segovia, Surf.Sci,218,178,1989
[4] D. S. Seo, J. K. Lee, and H. Kim, J. Cryst. Growth 229, 428,2001
[5] M.Grätzel﹐Natur﹐414﹐338-344,2001
[6] U. Diebold, Surf. Sci. Reports, 48, 53-229, 2003
[7] Zhang, H. and Banfield, J.F., J. Phys. Chem. B 104, 3481 ,2000
[8] T. Kasuga, Langmuir, 14, 3160-3163 , 1998
[9] P. Hoyer, Langmuir, 12, 1411-1413, 1996
[10] Kasuga; Tomoko (Aichi-ken, JP); Hiramatsu; Masayoshi (Nagoya,
JP)Crystalline titania and process for producing the same 2000
[11] Kasuga; Tomoko (Aichi-ken, JP); Hiramatsu; Masayoshi (Nagoya,
JP)Crystalline titania having nanotube crystal shape and process for producing the same 2003
[12] Kasuga﹐T .﹔Hiramatsu﹐ M .﹔Hoson ﹐A. ﹔Sekino﹐T. Niihara﹐K.﹐
Langmuir﹐ 14﹐ 3160–3163, 1998
[13] Kasuga﹐T.﹔Hiramatsu﹐M.﹔Hoson﹐A.﹔Sekino﹐T.﹔Niihara﹐K.﹐Adv. Mater.﹐11﹐1307, 1999
[14] V. Zwilling, M. Aucouturier, E. Darque-Ceretti, Electrochim. Acta.,
45, 921-929,1999
[15] D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z.
Chen, E. C. Dickey, J. Mater. Res., 16, 3331, 2001
[16] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes,
Nano Letters, 5, 191-195, 2005
[17] Q. Cai, M. Paulose, O. K. Varghese, C. A. Grimes, J. Mater. Res.,
20, 230-236,2005
[18] G. K. Mor, O. K. Varghese, M. Paulose, N. Mukherjee, C. A.
Grimes,J. Mater. Res., 18, 2588-2593, 2003
[19] G. K. Mor, O. K. Varghese, M. Paulose, C. A. Grimes, Adv. Funct.
Mater., 15, 1291-1296, 2005
[20] J. M. Macak, H. Tsuchiya, P. Schmuki, Angew. Chem., Int. Ed., 44,2100-2120,2005
[21] Zeng﹐H.C.﹔ Liu﹐S.M.﹔ Gan﹐L.M .﹔ Liu﹐L. H.﹔ Zhang﹐W.D. Chem.Mater.﹐14﹐1391–1397, 2002
[22] Chen﹐Q.﹔Peng﹐L.M.﹔Du﹐G.H.﹔Che﹐R.C.﹔Yuan﹐Z.Y.﹐Am. Inst. Phys.﹐79﹐3702, 2001
[23] Lee﹐L.﹔Seo﹐D.S.﹔Kim﹐H.﹐J. Cryst. Growth﹐229﹐ 428–432, 2001
[24] J. Zhao, X. Wang, R. Chen, L. Li, Solid-State Commun., 134,
705-710 , 2005
[25] Macak, J. M.; Schnuki, P. Angew.Chem. Int. Ed., 44, 2100, 2005
[26] A. Fujishima, K. Honda, Nature, 238, 37-39, 1972
[27] O. K. Varghese, M. Paulose, C. A. Grimes, J. Nanosci. Nanotech.,
5, 1158-1165, 2005
[28] G. K. Mor, K. Shankar, O. K. Varghese, C. A. Grimes, J. Mater. Res., 19, 2989-2996,2004
[29] O. K. Varghese, G. K. Mos, C. A. Grimes, Mater. Res. Soc. Symp.
Proc., 828, 117-125, 2005
[30] O. K. Varghese, G. K. Mor, C. A. Grimes, J. Nanosci. Nanotech.,
4, 733-737,2004
[31] B. O’Regan, M. Grätzel, Nature, 353, 737, 1991
[32] M. Paulose, K. Shankar, C. A. Grimes, J. Phys. D: Appl. Phys. ,39, 2498-2503,2006
[33] M. J. Macak, H. Tsuchiya, P. Schmuki, Electrochemistry
Communication, 7, 1133-1137, 2005
[34] J.E. Murphy, M.C. Beard, A.G. Norman, S.P. Ahrenkiel,
J.C. Johnson , P. Yu, O.I, Micic, R.J. Ellingson , A.J.
Nozik ,J.Am.Chem.Soc.,2006
[35] Y. Chen , E. Johnson , X.J. Peng , Am.Chem.Soc.,129,10937,2007
[36] Y.W. Jun ,J.H. Lee , J.S. Choi , J.J. Cheon , Phys. Chem. B., 109,14795,2005
[37] C.B. Murray, C.R. Kagan , M.G. Annu.Rev.Mater.Sci.,30,545,2001
[38] B.R. Pamplin, Crystal Growth , Pergamon Press :New York,1975
[39] Y. Jiang , Forced Hydrolysis and Chemical Co-Precipitation .In Handbook of Nanophase and Nanostructured Materials, Z.L. Wang, Y. Liu , Z. Zhang, Eds. , Kluwer Acedemic :New York,p59, 2003
[40] P. Jongnam , J. Jin, Soon Gu K. ,J. Youngjin , H. Taeghwan, Angew. Chem.Int.Ed.,46, 4630,2007
[41] J.E. Jaffe and A. Zunger, Phy. Rev. B,28,5822,1983
[42] J.E. Jaffe and A. Zunger, Phy. Rev. B,27,5176, 1983
[43] S. Kono and M. Okusawa , J.Phys.Soc.Jpn.,37,1301, 1974
[44] W. Braun, A. Goldmann ,and M. Cardona ,Phys. Rev .B, 10,5069,1974
[45] L. L. Kazmerski and C. C. Shieh , Thin Solid Films,41,35, 1977
[46] D.C. Look and J.C. Manthuruthil, J. Phys. Chem. Solids,37,173,1976
[47] B. Tell , J.L. Shay , and H.M. Kasper , J.Appl.Phys,43,2469,1972
[48] L.L. Kazmerski ,M.S. Ayyagari, and G.A. Sanborn , J. Appl. Phys.,46,4865, 1975
[49] S.P. Grindle ,C.W. Smith , and S.D. Mittleman , Apply. Phys. Lett., 35,24, 1979
[50] H.L. Hwang , C.C. Tu, J.S. Maa, and C.Y. Sun, Solar Energy Mater., 2, 433, 1980
[51] Alivisatos, A.P.J.Phys.Chem.,100,13226, 1996
[52] B.D.Cullity,S.R.Stock,“Elements of X-Ray Differention”,3rd ed., Prentice,2001
[53] C.Kittel,“Introduction to Solid State Physics ”,Wiley,4th,1971
[54] M. Yan ,F. Chen ,J. Zhang ,M. Anpo , J. Phys. Chem. B, 109, 8673, 2005
[55] Hiroyuki Nakamura ,Wataru Kato, Masato Uehara , Katsuhiro Nose,
Takahisa Omato , Chem.Mater.,18,3330, 2006
[56] X. H. Zhang ,Y. C. Du ,Z. H. Zhou ,Journal of Hydrogen Energy ,
35,3313-3321,2010
[57] I. Tsuji, H. Kato, H. Kobayashi, J. Phys. Chem. B, 109, 7323-7329
2005
校內:2020-07-19公開