簡易檢索 / 詳目顯示

研究生: 葉昌鑫
Yeh, Chang-Hsin
論文名稱: 奈米金屬多層膜黏彈性質:奈米壓印及微米柱試驗之探討
Nanoindentation and micro-compression studies of viscoelastic properties of nano-layered metallic thin films
指導教授: 王雲哲
Wang, Y. C.
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 101
中文關鍵詞: 潛變奈米複合材料濺鍍氧化層黏彈性質微米柱奈米壓印
外文關鍵詞: micro-compression, viscoelastic, Nanoindentation, multilayers, micropillar
相關次數: 點閱:105下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文藉由奈米壓印及微米柱壓力試驗探討奈米金屬多層膜之黏彈性質,首先 由濺鍍方式製作銅奈米金屬多層膜探討銅膜含“天然”氧化層及濺鍍氧化層的差異,進而了解金屬多層膜的力學性質及變形機制,此外本文量測壓克力(PMMA)、不鏽鋼(304 stainless steel)、環氧樹脂(epoxy)、銅基玻璃基屬(metallic glass)和silicon (100)材料的奈米壓印性質;而另一個探討的主題為在奈米濺鍍金屬薄膜上,使用雙束型聚焦離子束(DB-FIB)來挖取微米柱(micro pillar),使得金屬薄膜上產生微米柱的結構,運用壓痕試驗研究奈米尺度下的柱效應;第三個主題為不同的材料由奈米壓痕來測驗潛變的效應和微米柱的潛變行為。奈米薄膜與奈米複合材料的主要量測方法為奈米壓痕試驗(nano-indentation test),奈米壓痕試驗為目前奈米表面力學性質的量測技術之ㄧ,壓痕主要是在奈米尺度下,在固定探針(tip)施加力於薄膜使其破壞的技術,可以即時記錄壓痕負載與壓痕深度,並且進一步的計算出材料的硬度(hardness)、彈性模數(elastic modulus)與黏彈性質(viscoelasticity)等等;壓痕的理論發展主要由Oliver與Pharr兩者根據連體力學所建立的力學模型,藉由負載及壓深的實驗量測材料的硬度與楊氏模數,而固體間彈性接觸力學的理論發展則為Hertz所提出。由奈米壓痕試驗可以發現銅奈米金屬多層膜比塊材銅楊氏模數相當但硬度提升,微米柱的力學性質在相對塊材上面應力明顯提升,銅奈米金屬多層膜銅膜含”天然”氧化層及濺鍍氧化層硬度明顯提升但楊氏模數下降,可以發現單層膜的楊氏模數為150 GPa硬度為2.5 GPa,多層銅的楊氏模數為150 GPa硬度為3 GPa,多層氧化銅的楊氏模數為 50 ~ 60 GPa硬度為 4 ~4.5 GPa,PMMA楊氏模數為5.5 GPa硬度為0.3 GPa,Silicon (100)楊氏模數為200 GPa硬度為14.5 GPa,epoxy楊氏模數為3 ~ 4 GPa硬度為0.1 ~ 0.2 GPa,metallic glass 150 GPa硬度為6 GPa,由奈米壓痕潛變的實驗可以知道PMMA的n值為4.6而單層銅為0.7在停滯力為3 mN下,奈米壓痕潛變實驗多層銅的n值為16.9而單層銅為1.0在停滯力為10 mN下,奈米壓痕潛變實驗多層銅的n值為835.3而單層銅為1.1在停滯力為25 mN下,在微米柱的潛變試驗可以發現在多層氧化銅微米柱的n最小為7.5而最大為154.1;由實驗潛變實驗可以發現每個材料的n值都隨著停滯力量的增加都有顯著的提昇。

    The aim of this study is to perform nanoindentation and micro-compression experimental tests to study the mechanical and viscoelastic properties of nano-layered metallic thin films. The nano-layered thin films were prepared with RF magnetron sputtering technique, and consisted of copper (Cu) and “native” copper oxide. For comparisons, single-layer copper and multilayers that contain copper and “deposited” copper oxide were tested. In addition to metallic multilayers, other materials, such as PMMA, 304 stainless steel, epoxy, metallic glass and silicon, are also studied for verification of testing methodology and comparison in their time-dependent mechanical properties. Two testing techniques are adopted. One is the conventional nanoindentation test, established by Oliver and Pharr, and the other is the micro-compression test on micropillars. Micropillars are milled with the focus ion beam (FIB) technique, and are subsequently compressed by nanoindenter with a flat tip for introducing uniform compressive stress. It is found that the nanoindentation hardness of Cu/Cu multilayers is larger than that Cu single layer, as well as the modulus of multilayers. For the indentation modulus and hardness of the tested materials, the Cu single layer (1 micron thick) exhibits a modulus of 150 GPa and hardness of 2.5 GPa, Cu/Cu multilayers shows a modulus of 155 GPa and hardness of 3 GPa, Cu/Cu2O a modulus of 50 ~60 GPa and hardness of 4 ~ 4.5 GPa, PMMA a modulus of 5.5 GPa and hardness of 0.3 GPa, silicon (100) modulus of 200 GPa and hardness of 14.5 GPa, steel a modulus 200 GPa and hardness of 6 GPa, epoxy a modulus 3 ~ 4 GPa and hardness of 0.1 ~ 0.2 GPa, Cu-based metallic glass a modulus of 150 GPa and hardness of 6 GPa. The indentation creep exponent n for Cu/Cu multilayers is to be 4.6, and is 0.7 for Cu single layer at tip load being 3 mN. In addition, the indentation creep exponent for Cu/Cu multilayers is 16.9, and for Cu single layer it is found n is equal to 1.0 at 10 mN tip load. Furthermore, the indentation creep exponent for Cu/Cu multilayers is 835.3 and that of Cu single layer is 1.1 at 25 mN tip load. As for Cu/Cu2O micropillars, their uniaxial compression creep exponent is found to be 7.5 (minimum) and 154.1 (maximum) at 0.01 mN tip load. Overall, it is found that, for all the materials tested, including Cu single layer, Cu/Cu multilayers, Cu/Cu2O multilayers, silicon (100) and PMMA, their creep exponents increase with tip load.

    Abstract (English) I Abstract (Chinese) III Acknowledgements V Table of Contents VI Table Lists VII Figures Lists VIII Nomenclature XIII Chpater 1 Introduction 1 1.1 Motivation 1 1.2 Literature survey 3 1.2.1 Contact Mechanics 3 1.2.2 Nanoindentation 6 1.2.3 Micropillar 16 Chpater 2 Theoretical Foundation 22 2.1 Boussinesq problem 22 2.2 Hertz contact problem 30 2.3 Linear viscoelastic contact problem 41 Chpater 3 Experimental Procedure 44 3.1 Samples for nanoindentation test 44 3.2 Nano-indentation system (MTS) 47 3.3 Scanning electron microscopy (FE-SEM 7000F) 50 3.4 Dual-Beam Focused Ion Beam (DB-FIB) 51 3.4.1 Micropillar preparation 52 3.4.2 Flat punch tip preparation 53 Chpater 4 Results and discussion 58 4.1 Connection between discrete viscoelastic models and Boltzmann 58 4.2 Creep results of single layer Cu, Cu/Cu, Cu/Cu2O, PMMA and Si (100) 65 4.2.1 Creep result by nanoindentation 65 4.2.2 Creep results by nanoindentation on micro pillar 76 Chpater 5 Conclusions and future work 90 References 92

    1. Y. T. Cheng and C. M. Cheng. Relationship between contact stiffness, contact depth, and mechanical properties for indentation in linear viscoelastic. Structural control solids using axisymmetric indenters, 13: 561-569, 2006
    2. A. Misra and H. Kung. Deformation behavior of nanostructured metallic multilayers. Advanced Engineering Materials, 3: 217-222, 2001
    3. J. Li and T. W. Chou. Elastic field of a thin-film/substrate system under an axisymmetric loading. International Journal of Solids and Structures, 34: 4463-4478, 1997
    4. N. G. Chechenin, J. Battiger and J. P. Krog. Nanoindentation of amorphous aluminum oxide films I. The influence of the substrate on the plastic properties. Thin Solid Films, 261: 219-227, 1995
    5. C. D. Yeo and A. A. Polycarpou. Nanomechanical properties of sub-10 nm carbon film overcoats using the nanoindentation technique. Journal of Materials Research, 22: 141-151, 2007
    6. P. J. Wei, J. F. Lin. A new method developed to evaluate both the hardness and elastic modulus of a coating-substrate system. Surface and Coatings Technology, 200: 2489-2496, 2005
    7. Z. H. Xu and X. Li. Effect of sample tilt on nanoindentation behaviour of materials. Philosophical Magazine, 87: 2299-2312, 2007
    8. L. Calabri, N. Puqni, A. Rota, D. Marchetto and S. Valeri. Nanoindentation shape effect: Experiments, simulations and modeling. 19: 395002, 2007
    9. S. Y. Chang and T. K. Chang. Grain size effect on nanomechanical properties and deformation behavior of copper under nanoindentation test. Department of Materials Engineering, Applied Physics, 101: 033507, 2007
    10. C. Shanqda and K. Fuiju. Pile-up/sink-in of rate-sensitive nanoindentation creeping solids. Modelling and Simulation in Materials Science and Engineering, 15: 823-834, 2007
    11. N. Tayebi, A. A. Polycarpou and T. F. Conry. Effects of substrate on determination of hardness of thin fillms by nanoscratch and nanoindentation techniques. Journal of Materials Research, 19: 1791-1802, 2004
    12. S. D. Han, R. Saha and W. D. Nix. Determining hardness of thin films in elastically mismatched film-on-substrate systems using nanoindentation. Acta Materialia, 54: 1571-1571, 2006
    13. S. Yang, Y. W. Zhang and K. Zeng. Analysis of nanoindentation creep for polymeric materials. Journal of Applied Physics, 95: 3655-3666, 2004
    14. E. Felder and C. Ramond-Angelelis. Mechanical analysis of indentation experiments with a conical indenter. Philosophical Magazine, 86: 5219-5230, 2006
    15. L. P. Chao, J. S. Hsu and Y. D. Lau. Measurement of nanomechanical properties of thin films by integrating nanoindentation system and atomic force microscope. International Journal of Nanoscience, 6: 57-64, 2007
    16. F. Wang, P. Huang and K. Xu. Strain rate sensitivity of nanoindentation creep in polycrystalline Al film on Silicon substrate. Surface and Coatings Technology, 201: 5216-5218, 2007
    17. G. Huang and H. Lu. Measurement of Young's relaxation modulus using nanoindentation. Mech Time-Depend Mater, 10: 229-243, 2006
    18. T. H. Fang and W. J. Chang. Nanoindentation characteristics on polycarbonate polymer film. Microelectronics Journal, 35: 595-599, 2004
    19. Y. C. Wang, A. Misra and R. G. Hoagland. Fatigue properties of nanoscale Cu/Nb multilayers. Scripta Materialia, 54: 1593-1598, 2006
    20. A. Bolshakov, W. C. Oliver, G. M. Pharr. Explanation for the shape of nanoindentation unloading curves based on finite element simulation. Materials Research Society Symposium – Proceedings, 356: 675-68, 1995
    21. D. S. Harding, W. C. Oliver and G. M. Pharr. Cracking during nanoindentation and its use in the measurement of fracture toughness. Materials Research Society Symposium – Proceedings, 356: 663-668, 1995
    22. T. Y. Tsui, M. G. Pharr, W. C. Oliver, C. S. Bhatia, R. L. White, S. Anders, A. Anders and I. G. Brown. Nanoindentation and nanoscratching of hard carbon coatings for magnetic disks. Materials Research Society Symposium – Proceedings, 383: 447-452, 1995
    23. J. M. Williams, S. M. Gorbatkin, R. L. Rhoades, W. C. Oliver, L. Riester and T. Y. Tsui. High-energy ion processing of materials for improved hardcoatings. TMS Annual Meeting, Advances in Coatings Technologies for Corrosion and Wear Resistant Coatings, 255-264, 1995
    24. T. Y. Tsui, C. A. Ross and G. M. Pharr. Nanoindentation hardness of soft films on hard substrates: Effects of the substrate. Materials Research Society Symposium – Proceedings, 347: 57-62, 1997
    25. B. N. Lucas and W. C. Oliver. Time dependent indentation testing at non-ambient temperatures utilizing the high temperature mechanical properties microprobe. Materials Research Society Symposium – Proceedings, 356: 645-650, 1995
    26. J. L. Hay and P. J. Wolff. Small correction required when applying the Hertzian contact model to instrumented indentation data. Journal of Materials Research, 16: 1280-1286, 2001
    27. T. Q. Yun. The exact integral equation of Hertz’s contact problem. Applied Mathematics and Mechanics, 12: 181-185, 1999
    28. Anthony C. Fischer-Cripps. Nanoindentation Second Edition. Springer-Verlag. New York. 2004
    39. W. C. Oliver and G. M. Pharr. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7: 1564-1583, 1992
    30. G. Fu. Indentation load-displacement relations at the elastic deformation stage. Journal of Materials Science, 39: 5573-5575, 2004
    31. S. I. Bulychev. Relation between the reduced and unreduced hardness in nanomicroindentation tests. Technical Physics, 44:775-781, 1999
    32. G. Fu and L. Cao. On the fundamental relations used in the analysis of nanoindentation data, Materials Letters, 62: 3063-3065, 2008
    33. G. Fu. On Sneddon’s boundary conditions used in the analysis of nanoindentation data. Journal of Materials Sience, 40: 1789-1791, 2005
    34. D. Chicot, I. Hage, P. Demarecaue and J. Lesage. Elastic properties determination from indentation tests, Surface and Coatings Technology, 81: 269-274, 1996
    35. F. M. Borodich and L. M. Keer. Contact problems and depth-sensing nanoindentation for frictionless and frictional boundary conditions. International Journal of Solids and Structures, 41: 2479-2499, 2004
    36. J. G. Swadener and E. P. George and G. M. Pharr. The correlation of the indentation size effect measured with indenters of various shapes. Journal of the Mechanics and Physics of Solids, 50: 681-694, 2002
    37. M. Atkinson. Phenomenology of the size effect in hardness tests with a blunt pyramidal indenter. Journal of Materials Science, 33: 2937-2947, 1998
    38. F. Wang, P. Huang and K. W. Xu. Time dependent plasticity at real nanoscale deformation. Applied Physics Letters, 90: 161921, 2007
    39. I. J. Spary, A. J. Bushby and N. M. Jennett. On the indentation size effect in spherical indentation. Philosophical Magazine, 86: 5581-5593, 2006
    40. K. Rashid and A. R. Abu. Interfacial gradient plasticity governs scale-dependent yield strength and strain hardening rates in micro-nano structured metals. International Journal of Plasticity, 24: 1277-1306, 2008
    41. K. Sangwal, B. Surowska and P. Blaziak. Relationship between indentation size effect and material properties in the microhardness measurement of some cobalt-based alloys. Materials Chemistry and Physics, 80: 428-437, 2003
    42. W. D. Nix. Elastic and plastic properties of thin films on substrates- nanoindentation techniques. Materials Science and Engineering A, 37-34: 234-236, 1997
    43. M. D. Uchic, D. M. Dimiduk, J. N. Florando and W. D. Nix. Sample dimensions influence strength and crystal plasticity. Science, 305: 986-989, 2004
    44. M. F. Doerner and W. D. Nix. A method for interpreting the data from depth-sensing indentation instruments. Journal of Materials Research, 1: 601-609, 1986
    45. W. D. Nix and H. Gao. Indentation size effects in crystalline materials: A law for strain gradient plasticity. Journal of the Mechanics and Physics of Solids, 46: 411-425, 1998
    46. J. G. Swadener and E. P. George and G. M. Pharr. The correlation of the indentation size effect measured with indenters of various shapes. Journal of the Mechanics and Physics of Solids, 50: 681-694, 2002
    47. F. Zhang, Y. Huang and K. C. Hwang. The indenter tip radius effect in micro- and nanoindentation hardness experiments. Acta Mechanica Sinica, 22: 1-8, 2006
    48. “MTS,” “Nano,” and “Nano Indenter” are registered trademarks of MTS Systems Corporation, Nano Instruments Innovation Center, 1001 Larson Drive, Oak Ridge, TN 37830 USA
    49. B. N. Lucas, W. C. Oliver and J. E. Swindeman. Dynamics of frequency-specific, depth-sensing indentation testing. Materials Research Society Symposium – Proceedings, 522: 3-14, 1998
    50. W. H. Poisl, W. C. Oliver and B. D. Fabes. The relationship between indentation and uniaxial creep in amorphous selenium. Journal of Materials Research, 10: 2024-2032, 1995
    51. G. M. Pharr. Measurement of mechanical properties by ultra-low load indentation. Materials Science and Engineering A, 253: 151-159, 1998
    52. J. R. Greer, W. C. Oliver , W. D. Nix. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Materialia, 53: 1821-1830, 2005
    53. J. Woirgard. Some results on the indentation of an elastic half space. Philosophical Magazine, 86: 5199-5217, 2006
    54. X. Li and B. Bhushan. A review of nanoindentation continuous stiffness measurement technique and its applications. Materials Characterization, 48: 11-36, 2002
    55. M. Sakai. Simultaneous estimate of elastic-plastic parameters in depth-sensing indentation tests. Scripta Materialia, 51: 391-395
    56. C. J. Lee, J. C. Huang and T. G. Nieh. Sample size effect and microcompression of Mg65Cu25Gd10 metallic glass. Applied Physics Letters, 91: 16913, 2007
    57. J. R. Greer. Bridging the gap between computational and experimental length scales: a review on nano-scale plasticity. Review Advanced Materials Science, 13: 59-70, 2006
    58. N. A. Mara, D. Bhattacharyya, P. Dickerson, R. G. Hoagland and A. Misra. Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Applied Physics Letters, 92: 231901, 2008
    59. K. L. Johnson, Contact mechanics, Cambridge University Press, New York, 1985
    60. S. Timoshenko and J. N. Goodier, Theory of elasticity, 3rd edition, McGraw-Hill Book Co., Inc., New York, 409-416, 1970
    61. E. G. Herbert, W. C. Oliver and G. M. Pharr. Nanoindentation and the dynamic characterization of viscoelastic solids. Journal of Physics D: Applied Physics, 41: 074021, 2008
    62. R. S. Lakers, Viscoelastic Solids, CRC Press, Boca Raton, 63, 1999
    63. C. Y. Zhang, Y. W. Zhang, K. Y. Zeng and L. Shen. Nanoindentation of polymers with a sharp indenter. Journal of Materials Research, 20: 1597-1605, 2005
    64. M. L. Oyen. Analytical techniques for indentation of viscoelastic materials. Philosophical Magazine, 86: 5625-5641, 2006
    65. S. Suresh, T. G. Nieh and B. W. Choi. Nano-indentation of copper thin films on silicon substrates. Scripta Materialia, 41: 951-957, 1999
    66. L. C. Kuo, L. Sanboh, S. L. Piil and T. Nguyen. Load-displacement relations for nanoindentation of viscoelastic materials. Journal of Applied Physics, 100: 033503, 2006
    67. L. Shen, L. Wabg, T. Liu and C. He. Nanoindentation and morphological studies of epoxy nanocomposites. Macromol. Materials Engineering, 291: 1358-1366, 2006
    68. S. E. Grillo, M. Ducarrior, M. Nadal, E. Tournie and J. P. Faurie. Nanoindentation of Si, GaP, GaAs and ZnSe single crystals. Journal of Physics D: Applied Physics, 36: L5-L9, 2003
    69. L. Zhou, Y. X. Yao and Q. Liu. Experimental research on the influence of indenter tip radius to indentation hardness. Applied Mechanics and Materials, 10-12: 327-330, 2008
    70. G. M. Odegard, T. Bandorawalla, H. M. Herring and T. S. Gates. Characterization of viscoelastic properties of polymeric materials through nanoindentation. SEM Annual Conference and Exposition on Experimental and Applied Mechanics, 2003
    71. Z. Cao and X. Zhang. Size-dependent creep behaviour of plasma-enhanced chemical vapour deposited silicon oxide films. Journal of Physics D: Applied Physics, 39: 5054-5063, 2006
    72. H. Lu, B. Wang, J. Ma, G. Huang and H. Viswanathan. Measurement of creep compliance of solid polymers by nanoindentation. Mechanics of Time-Dependent Materials, 7: 189-207, 2003
    73. G. Huang, B. Wang and H. Lu. Measurements of viscoelastic function of polymers in the frequency-domain using nanoindentation. Mechanics of Time-Dependent Materials, 8: 345-364, 2004
    74. S. Lee and W. G. Knauss. A note on the determination of relaxation and creep data from ramp tests. Mechanics of Time-Dependent Materials, 4: 1-7, 2000
    75. M. Munz. Evidence for a three-zone interphase with complex elastic-plastic behaviour- Nanoindentation study of an epoxy-thermoplastic composite. Journal of Physics D: Applied Physics, 39: 4044-4058, 2006
    76. Y. Cao, S. Allameh, D. Nankivil, S. Sethiaraj, T. Otiti and W. Soboyejo. Nanoindentation measurements of the mechanical properties of polycrystalline Au and Ag thin films on silicon substrates: Effects of grain size and film thickness. Materials Science and Engineering A, 427: 232-240, 2006
    77. A. Rinaldi and P. Peralta and C. Friesen and K. Sieradzki. Sample-size effects in the yield behavior of nanocrystalline nickel. Acta Materialia, 56: 511-517, 2008
    78. D. M. Dimiduk, M. D. Uchic and T. A. Parthasarathy. Size-affected single-slip behavior of pure nickel microcrystals. Acta Materialia, 53:4065-4077, 2005
    79. J. Michler, K. Wasmer, S. Meier and F. Ostund. Plastic deformation of gallium arsenide micropillars under uniaxial compression at room temperature. Applied Physics Letters, 90: 043123, 2007
    80. J. M. S. Juan and M. L. N and C. A. Schuh. Superelasticity and shape memory in micro-and nanometer-scale pillars. Advanced Materials, 20: 272-278, 2008
    81. G. Hang and H. Lu. Measurements of two independent viscoelastic functions by nanoindentation. Experimental Mechanics, 47: 87-98, 2007
    82. R. W. Hertzberg. Deformation and fracture mechanics of engineering materials. Fourth Edition. John Wiley & Sons, Inc. Canada, 168, 1996
    83. G. Fu. Theoretical study of complete contact indentations of viscoelastic materials. Journal of Materials Science, 39: 2877-2878, 2004
    84. R. C. Chang and B. C. Huang. Dynamic responses of a viscoelastic material in nanoscale by using harmonic nanoindentation. Tamkang Journal of Science and Engineering, 8: 217-224, 2005
    85. L. Cheng, X. Xia, W. Yu, L. E. Scriven, W. W. Gerberich. Flat-punch indentation of viscoelastic material. Journal of Polymer Sicience: Part B: Physics 38: 10-22, 2000
    86. V. Koval, M. J. Reece and A. J. Bushby. Relaxation processes in dielectric and electromechanical response of PZT thin films under nanoindentation. Ferroelectrics, 381: 55-61, 2005
    87. B. Beake. Modeling indentation creep of polymers-A phenomenological approach. Journal of Physics D: Applied Physics, 39: 4478-4485, 2006
    88. N. K. Sinha , T. Terada, P. Au. Minimum creep rate from primary creep using strain relaxation and recovery test. Structures, Materials and Propulsion Laboratory, Institute for Aerospace Research, 49: 1145-1150, 2003
    89. R. Roumina, B. Raeisinia and R. Mahudi. Indentation creep of antimonial lead alloys. Journal of Materials Science Letters, 22: 1435-1437, 2003
    90. H. Li and A. H. W. Mgan. Size effects of nanoindentation creep. Journal of Materials Research, 19: 513-522, 2004
    91. N. K. Sinha , S. Sinha. Stress relaxation at high temperatures and the role of delayed elasticity. Materials Science and Engineering A, 393: 179-190, 2005
    92. K. S. Ng and A. H. W. Ngan. Creep of micron-sized aluminium columns. Philosophical Magazine Letters, 87: 967-977, 2007
    93. N. Afrin and A.H.W. Ngan. Creep of micro-sized Ni3Al columns. Scripta Materialia, 54: 7-12, 2006

    下載圖示 校內:2010-08-20公開
    校外:2018-08-20公開
    QR CODE