| 研究生: |
蔡博丞 Tsai, Bo-Cheng |
|---|---|
| 論文名稱: |
基於雙端網路架構之馬達強健觀測器設計工具包開發 Development of Motor Robust Observer Design Toolkit Based on Two-Port framework |
| 指導教授: |
蔡明祺
Tsai, Mi-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | H2最佳化控制 、H∞強健控制 、觀測器 、雙端網路 |
| 外文關鍵詞: | optimal control, H2 control, robust control, H∞ control, observer design, Chain-Scattering Description (CSD), two-port framework |
| 相關次數: | 點閱:36 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對日益廣泛應用的馬達控制領域,開發了一種基於雙端網路架構的強健控制馬達觀測器設計工具包,以提供使用者一套簡便的觀測器設計方法。首先,本研究基於成熟的鏈散射式描述法求解H∞/H2問題,並提出了利用轉移函數層級來理解閉迴路轉移函數特性的證明。在此基礎上,針對通用型問題、輸出注入問題和輸出估測問題進行了詳細分析,並為每一類型問題提供了符合各架構的馬達觀測器設計案例。最終,將解題所需工具與設計案例整合為設計工具包,並提供了友好的使用者介面。此外,結合雙端網路架構的模擬功能,使得使用者能夠通過此工具包輕鬆進行馬達觀測器的實務設計與模擬。本研究所開發的工具包為馬達觀測器的設計提供了一種高效且直觀的解決方案。
This study focuses on the development of a motor robust observer design toolkit based on the two-port framework, aiming to provide users with a simplified method for designing observers in the increasingly prevalent field of motor control. Initially, the study employs a well-established chain-scattering description approach to solve the H∞/H2 problems and introduces a proof for understanding closed-loop transfer function characteristics in the transfer function level. Based on these characteristics, detailed analyses are conducted for general problems, output injection problems, and output estimation problems, with corresponding motor observer design cases provided for each type. Ultimately, the necessary tools and design cases are integrated into a design toolkit, accompanied by a user-friendly interface. Furthermore, the toolkit incorporates simulation capabilities based on the two-port framework, enabling users to easily conduct practical design and simulation of motor observers. This study's toolkit offers an efficient and intuitive solution for the design of motor observers.
[1] R. S. Smith and J. C. Doyle, "Model invalidation: A connection between robust control and identification," in *Proc. 1989 American Control Conf.*, 1989, pp. 1435-1440.
[2] M. Green and D. J. N. Limebeer, *Linear Robust Control*. Mineola, NY: Courier Corporation, 2012.
[3] J. Chen, "Frequency-domain tests for validation of linear fractional uncertain models," *IEEE Trans. Autom. Control*, vol. 42, no. 6, pp. 748-760, Jun. 1997.
[4] K. Zhou, J. C. Doyle, and K. Glover, *Robust and Optimal Control*. Upper Saddle River, NJ: Prentice Hall, 1996.
[5] M.-C. Tsai and D.-W. Gu, "Robust and optimal control," *Adv. Ind. Control*, vol. 33, no. 97, pp. 2095-2095(1), 2014.
[6] M.-C. Tsai and F.-Y. Yang, "Chain-scattering description approach to characterize stabilizing controllers and optimal H2 solution," *IET Control Theory Appl.*, vol. 5, no. 8, pp. 1022-1032, 2011.
[7] Z.-X. Zang, et al., "Granger causality analysis implementation on MATLAB: A graphic user interface toolkit for fMRI data processing," *J. Neurosci. Methods*, vol. 203, no. 2, pp. 418-426, 2012.
[8] S. Yadav and S. S. Patil, "Design and Implementation of Fuzzy Logic Controllers for DC Motor Speed Control using MATLAB-GUI Application," *Int. J. Control Autom.*, vol. 3, no. 2, pp. 725-728, 2013.
[9] M.-C. Tsai and C.-S. Tsai, "A chain scattering-matrix description approach to H∞ control," *IEEE Trans. Autom. Control*, vol. 38, no. 9, pp. 1416-1421, Sep. 1993.
[10] P.-J. Ko and M.-C. Tsai, "H∞ Control Design of PID-Like Controller for Speed Drive Systems," *IEEE Access*, vol. 6, pp. 36711-36722, 2018.
[11] B. Noble, et al., *Applied Linear Algebra*. Englewood Cliffs, NJ: Prentice-Hall, 1977.
[12] 瑞巴凡,用於系統建模, 系統元件模組連接及其可視化的雙埠矩陣框架,碩士論文,國立成功大學,2022。
[13] 柯博任,永磁馬達監控技術研究與應用,博士論文,國立成功大學,2019。
[14] B.-C. Tsai, C. U. Ubadigha, and M.-C. Tsai, "An Optimal H2 Observer Controller Design Formulation and Solution Based on Chain-Scattering Description Approach," in *Proc. 2023 Int. Autom. Control Conf. (CACS)*, 2023, pp. 1-6.
[15] G. Ellis, *Observers in Control Systems: A Practical Guide*. Oxford, U.K.: Elsevier, 2002.
[16] H. Kimura, *Chain-Scattering Approach to H∞-Control*, 1998.
[17] H. Kimura, "Conjugation and H∞ control," in *Proc. 9th Int. Symposium on Mathematical Theory of Networks and Systems*, Amsterdam, 1989.
[18] 周妍綺,基於雙端網路架構之強健控制器設計工具包開發,碩士論文,國立成功大學,2024。
校內:2029-07-26公開