| 研究生: |
黃婕 Huang, Chieh |
|---|---|
| 論文名稱: |
一系列金屬硫碘族化合物的合成與鑑定 Syntheses and Characterization of a Family Metal Chalcoiodides |
| 指導教授: |
許桂芳
Hsu, Kuei-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 金屬硫鹵族化合物 、熱電材料 、Homologous Series |
| 外文關鍵詞: | metal chalcogenides, thermoelectric materials, homologous series |
| 相關次數: | 點閱:86 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用固態高溫搭配助熔劑長晶法,在Bi-Cu-I-Q (Q = Se, S)系統中,開發四元硫鹵族化合物。分為三個系統,系統一為等結構之Bi3Cu3I2S5 (1) 與Bi3Cu3I2Se5 (1a),系統二為Bi3Cu4I3Se5 (2)以及系統三為結構相似的BiCu1.7I1.3S1.7 (3) 和BiCu1.9I1.1S1.9 (3a)。
在第一個系統中,化合物Bi3Cu3I2S5 (1) 及Bi3Cu3I2Se5 (1a) 的晶系皆為orthorhombic Cmcm,晶格常數為分別為:a = 4.0108(13) Å,b = 13.227(4) Å,c = 23.626(7) Å;a = 4.1212(9) Å,b = 13.755(3) Å,c = 23.872(5) Å。在化合物1結構中包含了BiI2S3及BiS5多面體以共用邊的方式連接成雙鏈,雙鏈之間利用分散在三配位及四面體配位的Cu原子連結成薄層,薄層再經過鏡面運作形成平行於ab面的厚層,厚層間藉由遠距離的Bi…I偶極-偶極作用力堆疊再一起。而化合物1與化合物1a為等結構之同族元素置換 ( Se置換S )。
第二個系統為化合物Bi3Cu4I3Se5 (2) 的晶系為orthorhombic Cmcm,晶格常數為:a = 4.1180(2) Å,b = 13.8267(7) Å,c = 26.8988(12) Å。與化合物1a有相似結構的厚層,主要差別在於c軸長度較明顯多了約3 Å,因為在該方向,厚層與厚層之間多了一層以CuI4及CuI3Se所連接而成的薄層做連結。有趣的地方是,化合物1a與化合物2彼此之結構間部份骨架相同,差別在於化合物2多出之薄層,可將兩化合物分子式寫成通式Bi3Cu3+xI2+xQ5 (Q = S, Se; x = 0, 1) 之Homologous Series。
第三個系統為化合物BiCu1.7I1.3S1.7 (3) 及BiCu1.9I1.1S1.9 (3a),兩者晶系皆為Monoclinic C2/m,晶格常數分別為:a = 28.093(4) Å,b = 4.1015(6) Å,c = 10.5876(16) Å;a = 27.916(4) Å,b = 4.0816(5) Å,c = 10.6203(14) Å。結構中Bi(2) 所配位之I(3) 位置與S(4) 原子為混填現象,且Bi(2) 有分裂形成位置十分相近之Bi(2A) 的情形。結構中可以看見以一連串的三角平面配位及四面體配位的Cu原子做連結。兩者的結構相似,差別在於化合物3a比化合物3多出了一個Cu(9) 的位置,同時也伴隨著I(3) 與S(4) 原子混填比例的改變,因此整體化合物仍能維持電中性。
此外,化合物1、3及3a可藉由固態合成方式,在400℃ 反應72小時得到純相,並測得其熔點溫度分別為437 ℃、415 ℃ 及420 ℃,再結晶溫度分別為379 ℃、346 ℃ 及358 ℃。在能隙的部分,化合物1、1a、3及3a分別為0.87 eV、0.72 eV、0.99 eV及0.97 eV。化合物1、3及3a有好的熱穩定性 ( thermal stability ),後續將測定其S ( Seebeck coefficient, thermopower ) 席貝克係數/熱電勢,σ ( electric conductivity ) 電導率,κ ( thermal conductivity ) 熱傳導係數,預計朝熱電性質的方向做討論。
A family metal chalcogenides in the systems of Bi-Cu-I-Q ( Q = S, Se) were synthesized by soild-state reaction. We successfully discovered five phases of Bi3Cu3I2Se5 (1), Bi3Cu3I2Se5 (1a), Bi3Cu4I3Se5 (2), BiCu1.7I1.3S1.7 (3) and BiCu1.9I1.1S1.9 (3a). Compound 1 and 1a are isostructural with different chalcogenide element. These series of compounds adopt a three-dimensional structure formed by BiI2Q3 square pyramids, BiQ5 square pyramids, CuQ3 trigonal pyramid, CuIQ3 tetrahedra and CuI2Q2 tetrahedra. In addition, disorder of Cu+ cation was found in the structure which may exhibit the property of ion conductivity. Compound 1a and 2 are homologous series with general formula Bi3Cu3+xI2+xQ5 ( Q = Se; x = 0, 1). This series have the same main framework but different in an evolving module which is built with CuI4 and CuI3Se tetrahedra. Because compound 2 have the additional layer, its thickness along c-axis increased about 3 Å. These compounds are crystallize in the same space group Cmcm. We also try to get sulfide compounds with x = 1, 2 but actually found compound 3 and 3a which have similar structure and crystallize in the same space group C2/m. The framework is constructed by BiI2S3 square pyramids, CuS3 trigonal pyramid, CuI2S2 and CuIS2 tetrahedra. The difference in compound 3 and 3a is the additional Cu(9) site in 3a. These compounds have Bi(2) disorder and I(3) site is filled with S(4).Compounds 1, 3, 3a are thermal stable, and the measurement of thermoelectric properties, such as thermopower, electrical conductivity and thermal conductivity are undertaken.
[1] Korkosz, R. J.; Chasapis, T. C.; Lo, S. H.; Kanatzidis, M.; Doak, J. W.; Kim, Y. J.; Wu, C. I.; Hatzikraniotis, E.; Hogan, T. P.; Seidman, D. N.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. J. Am. Chem. Soc. 2014, 136, 3225.
[2] Ko, J.; Kim, J. Y.; Choi, S. M.; Lim, Y. S.; Seo, W. S.; Lee, K. H. J. Mater. Chem. A 2013, 1, 12791.
[3] Bell, L. E. Science 2008, 321, 1457.
[4] Sootsman, J. R.; Chung, D. Y.; Kanatzidis, M. G. Angew. Chem. Int. Ed. 2009, 48, 8616.
[5] Sankar, R.; Muthuselvam, I. P.; Butler, C. J.; Liou, S. C.; Chen, B. H.; Chu, M. W.; Lee, W. L.; Lin, M. T.; Jayavel, R.; Chou, F. C. Cryst. Eng. Comm. 2014, 16, 8678.
[6] Kulbachinskii, V. A.; Kytin, V. G.; Kudryashov, A. A.; Kuznetsov, A. N.; Shevelkov, A. V. J. Solid State Chem. 2012, 193, 154.
[7] (a) Heerwig, A.; Ruck, M. Z. Anorg. Allg. Chem. 2009, 635, 2162. (b) Heerwig, A.; Ruck, M. Z. Anorg. Allg. Chem. 2010, 636, 1860.
[8] (a) Ruck, M.; Poudeu, P. F. P. Z. Anorg. Allg. Chem. 2008, 634, 475. (b) Ruck, M.; Poudeu, P. F. P. Z. Anorg. Allg. Chem. 2008, 634, 482.
[9] Heerwig, A.; Müller, U.; Nitsche, F.; Ruck, M. Z. Anorg. Allg. Chem. 2012, 638, 1462.
[10] Heerwig, A.; Nitsche, F.; Ruck, M. Z. Anorg. Allg. Chem. 2011, 637, 62.
[11] Pfitzner, A.; Zimmerer, S. Angew. Chem. Int. Ed. Engl. 1997, 36, 982.
[12] Pfitzner, A. Chem. Eur. J. 1997, 3, 2032.
[13] Assoud, A.; Thomas, S.; Sutherland, B.; Zhang, H.; Tritt, T. M.; Kleinke, H. Chem. Mater. 2006, 18, 3866.
[14] Liu, H. L.; Shi, X.; Xu, F. F.; Zhang, L. L.; Zhang, W. Q.; Chen, L. D.; Li, Q.; Uher, C.; Day, T.; Snyder, G. J.; Nature Mater. 2012, 11, 422.
[15] Lykourgos, A. M.; Iordanidis, L.; Kanatzidis, M. G. Inorg. Chem. 2001, 40, 6204.
[16] Sheldrick, G. M. Acta Cryst. 2008, 64, 112.
[17] McCusker, L. B.; Von Dreele, R. B.; Cox, D. E.; Louer, D.; Scardi, P. J. Appl. Cryst. 1999, 32, 36.
[18] Tomeoka, K.; Ohmasa, M.; Sadanaga, R. Mineralogical Journal. 1980, 10, 57.
[19] Heerwig, A.; Nitsche, F.; Ruck, M.; Z. Anorg. Allg. Chem. 2011, 637, 1131.
[20] Balić-Žunić, T.; Mariolacos, K.; Friese, K.; Makovicky, E. Acta. Cryst. B 2005, 61, 239.
[21] Tomeoka, K.; Ohmasa, M.; Sadanaga, R. Minera. J. 1980, 10, 57.
[22] Burdett, J. K.; Eisenstein, O. Inorg. Chem. 1992, 31, 1758.
[23] Kohatsu, I.; Wuensch, B.J. Acta. Cryst. B 1976, 32, 2401.
[24] Lewis, J.jr.; Kupcik, V. Acta. Cryst. B 1974, 30, 848.
[25] Liang, I. C.; Bilc, B. I.; Manoli, M.; Chang, W. Y.; Lin, W. F.; Kyratsi, T.; Hsu, K. F. J. Solid State Chem. 2016, 234, 1.
[26] Averill, B. A.; Eldredge, P. Chemistry: Principles, Patterns, and Applications 2012, 12, 1405.
[27] Kanatzidis, M. G. Acc. Chem. Res. 2005, 38, 361.
[28] Hsu, K. F.; Lal, S.; Hoganb, T.; Kanatzidis, M. G. Chem. Commun. 2002, 1380.
[29] Ohmasa, M.; Mariolacos, K. Acta Cryst. B 1974, 30, 2640.
[30] Kim, J. H.; Chung, D. Y.; Kanatzidis, M. G. Chem. Commun. 2006, 15, 1628.
[31] Zebarjadi, M.; Esfarjani, K.; Dresselhaus, M. S.; Ren, Z. F.; Chen, G. Energy Environ. Sci. 2012, 5, 5147.
[32] Disalvo, F. J. Science 1999, 283, 804.