簡易檢索 / 詳目顯示

研究生: 蔡成章
Tsai, Cheng-Jang
論文名稱: 側鏈含香豆素團基發光高分子的合成與光電性質
The Synthesis and Optoelectronic Properties of Electroluminescent Polymers Containing Coumarin Side Chains
指導教授: 陳雲
Chen, Yun
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 173
中文關鍵詞: 發光高分子香豆素
外文關鍵詞: PLED, Coumarin
相關次數: 點閱:47下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要合成新的電激發光共聚高分子材料,這些材料可分成三種類型:(1)含雙鍵之全共振[poly(p-phenylenevinylene); PPV]發光主鏈(P1)以及側鏈含拉電子的7-氧-4-甲基香豆素(7-oxy-4-methylcoumarin, OMC)團基(P2);(2)含二苯乙烯苯(1,4-distyrylbenzene, DSB)衍生物之孤立發光主鏈(P3 and P5)和側鏈含拉電子的OMC團基(P4 and P6)以及相對應模式化合物(M1-M3);(3)含三鍵之全共振poly[2,5-dialkoxy-p-phenylene ethynylene-2,7-(9,9-dihexylfluorene ethynylene)]s (PPEF)發光主鏈(P7)以及側鏈含拉電子的OMC團基(P8)。肇因於高分子(P2, P4, P6, and P8)主鏈貢獻之發光,均分別和相對映模式高分子(P1, P3, P5, and P7)相似。因此,可斷定能量從P2, P4, P6和P8的OMC團基完全地轉移到其主鏈上。高分子元件的電激發光有藍光(P5 and P6)和綠光(P1, P2, P3 and P4)及黃光(P7 and P8)。然而OMC團基電子傳送特質而增加了P2, P4, P6和P8的電子親和性。OMC團基的拉電子特質,可使元件的起始電壓降低並且提高最大亮度。其中,P2因為OMC團基而呈現較快的光交聯速率,因此而製成圖型發光的PLED元件。
    此外,吾人亦合成一系列主鏈含噁二唑(1,3,4-oxadiazole, OXD)團基與不同脂肪長度之聚醚(PO5-PO10 and PO12)以及相對應模式化合物(MO5-MO10 and MO12)。此聚醚與模式化合物都具有特殊的反奇偶效應之液晶現象。在(ITO/PEDOT/P7+PO7/Ca:Al)掺雜元件中,因OXD團基的拉電子特質,亦可使元件的起使電壓降低並且提高最大亮度。

    In this investigation, we synthesized new polymeric electroluminescent (EL) materials, which can be divided into three parts: (1) poly(p-phenyleneviny1ene) (PPV) derivatives P1 and P2, containing hexyloxy side groups and 7-oxy-4-methylcoumarin (OMC) groups via hexyloxy spacer, respectively; (2) four copolyethers (P3-P6) consisting of two isolated emitting chromophores [2,5-dihexyloxy-1,4-distyrylbenzene (HODSB) and 2,5-dihexyloxy-1,4- di(4-methylenestyryl)benzene (HOMDSB) for P3 and P4, 2,5-dihexyl-1,4-distyrylbenzene (HDSB) and HOMDSB for P5 and P6 in the backbone, in which P4 and P6 further contain electron-transporting chromophores (OMC) in the side chain; (3) poly[2,5-dialkoxy-p-phenyleneethynylene-2,7-(9,9-dihexylfluorene ethynylene)]s (PPEF) consisting of conjugated emitting chromophores of the backbone and pendant hexyloxy groups (P7) or pendant OMC chromophores via flexible spacer (P8). The emissions of polymers (P2, P4, P6, and P8) and corresponding model polymers (P1, P3, P5, and P7) films are similar which is attributed to polymer backbone, respectively. Accordingly, efficient energy transfer from the OMC chromophores to polymer backbone occurred readily in P2, P4, P6, and P8. Double-layer EL devices revealed blue (P5 and P6), green (P1, P2, P3 and P4) and yellow (P7 and P8) electroluminescence, respectively. The electron affinity of P2, P4, P6, and P8 were enhanced by introducing electron-transporting OMC chromophores. Moreover, incorporation of OMC side groups effectively reduced turn-on electric field and enhanced luminance maxima of the EL devices due to increased electron affinity. However, P2 exhibited higher photo-crosslinking rated due to pendant 4-methylcoumarin chromophores. Patterned emission from PLED utilizing this effect was also demonstrated.
    Furthermore, seven polyoxadiazoles (PO5-PO10 and PO12) have been also synthesized. Corresponding model compounds (MO5-MO10 and MO12), consisting of two terminal mesogenic 2,5-bisphenyl-1,3,4-oxadiazole units and central polymethylene spacers, were also prepared for comparison. Both polymers and model compounds exhibit extraordinary odd-even effect, i.e. odd ones show higher transition emperatures (Tm, Ti). Moreover, oxadiazol groups effectively reduced turn-on electric field and enhanced luminance maxima of the EL devices (ITO/PEDOT/P7+PO7/Ca:Al) dued to increase electron affinity.

    摘 要..….. I Abstract.. II 誌 謝…… IV 目 錄… .........V 流程目錄 .........IX 圖目錄..... XI 第一章 緒論 1 1-1 前言 1 1-2 主鏈含雙鍵之共軛高分子 2 1-3 主鏈含孤立發光團基高分子 3 1-4 主鏈含參鍵之共軛高分子 4 1-5 含香豆素基團高分子 5 1-6 含噁二唑的電子傳送性高分子 7 1-7 研究目的與動機 9 第二章 原理 10 2-1 螢光效應[64] 10 2-1-1 量子效率 12 2-1-2 能量轉移(Förster transfer) 12 2-1-3 PLED的發光原理 13 2-1-4 PLED的元件構造 15 2-1-5 發光效率 16 2-2 液晶效應 17 2-2-1 液晶的分類 18 2-2-2 液晶高分子(Liquid Crystal Polymer, LCP) 22 第三章 實驗內容 26 3-1 實驗裝置與設備 26 3-2 鑑定儀器 27 3-3 物性及光電特性測量儀器 28 3-4 藥品及材料 33 3-5 合成步驟與結果 37 3-5-1 雙碘單體4和7的合成 37 3-5-2 模式化合物M1和M2的合成 41 3-5-3 雙乙烯基單體的合成(11和12)與純化(14) 43 3-5-4 雙乙炔基單體18的合成 46 3-5-5 雙氟單體19的合成 48 3-5-6 模式化合物M3和MO5-MO10及MO12的合成 48 3-5-8 高分子P1-P8和PO5-PO10及PO12之合成 51 3-6 反應原理 61 3-6-1 有機金屬觸媒 61 3-6-2 Heck Reaction 61 3-6-3 聚芳香醚的合成 62 3-7 相對量子產率 63 3-8 循環伏安實驗 64 3-9 元件製作 66 3-9-1 ITO玻璃之清洗 67 3-9-2 ITO玻璃之蝕刻 67 3-9-3 高分子發光膜的製作 69 3-9-4 陰極蒸鍍 69 3-9-5 元件量測 70 3-9-6 曝光裝置(Irradiation equipment) 70 第四章 側鏈含香豆素團基的PPV之合成與光電及光交聯性質 102 4-1 前言 102 4-2 高分子的合成與熱性質 102 4-2-1單體和高分子之合成與鑑定 102 4-2-2 高分子之熱性質 103 4-3 高分子在溶液中及薄膜態的光學性質 103 4-4 電化學性質探討 106 4-4-1 前言 106 4-4-2 主鏈為PPV共振發光基團高分子(P1和P2)之電化學性質 108 4-5 雙層OLED元件 109 4-6 光交聯性質 111 4-7 結論 112 第五章 主鏈含二苯乙烯苯孤立發光團基及側鏈含香豆素團基共聚醚之合成與光電性質 117 5-1 前言 117 5-2 高分子的合成與熱性質 118 5-2-1單體和高分子之合成與鑑定 118 5-2-2 高分子之熱性質 118 5-3 高分子在溶液中及薄膜態的光學性質 121 5-4 電化學性質探討 126 5-5 雙層OLED元件 129 5-6 結論 129 第六章 主鏈含fluorene發光團基及側鏈含香豆素基團高分子之合成與光電性質 132 6-1 前言 132 6-2 高分子的合成與熱性質 132 6-2-2 高分子之熱性質 132 6-3 高分子在溶液中及薄膜態的光學性質 134 6-4 電化學性質探討 136 6-5 雙層OLED元件 139 6-6 結論 139 第七章 熱向型液晶聚噁二唑之製備與光電性質 142 7-1 前言 142 7-2 高分子與單體的合成與鑑定 142 7-3 高分子熱性質 143 7-4液晶現象 149 7-5高分子在溶液中及薄膜態的光學性質 152 7-6 電化學性質探討 155 7-7 雙層PLED元件 158 7-8 結論 158 第八章 總結 162 參考文獻 164 著作目錄 171

    [1] M. Pope, H. Kallmann, P. Magnante, J. Chem. Phys., 38, 2024 (1936).
    [2] C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett, 51, 913 (1987).
    [3] J. H. Burrououghes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. MacKay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature, 347, 539 (1990).
    [4] 陳金鑫;光訊,第65期,P.12,民國86年4月.
    [5] D. Braun, A. J. Heeger, Appl. Phys. Lett., 58, 1982 (1995).
    [6] I.N. Kang, D.H. Hwang, H.K. Shim, T. Zyung, J.J. Kim, Macromolecules, 29, 165 (1996).
    [7] S. Tasch, C. Brandstaetter, F. Meghdadi, G. Leising, G. Froyer, L. Athouel, Adv. Mater., 9, 33 (1997).
    [8] J. Kido, M. Kimura, K. Nagai, Science, 267, 1332 (1995).
    [9] T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, J. C. Sturm, Appl. Phys. Lett., 72, 519 (1998).
    [10] C. D. Müller, A. Falcou, N. Reckefuss, M. Rojahn, V. Wiederhirn, P. Rudati, H. Frohne, O. Nuyken, H. Becker, K. Meerholz. Nature, (London) 421, 829 (2003).
    [11] A. Pogantsch, G. Trattnig, E. Zojer, H. Tillmann, H.H. Hörhold, U. Scherf, G. Langer, W. Kern, Synthetic Metals, 138, 85 (2003).
    [12] C. Buchgraber, J. Spanring, A. Pogantsch, M. Turner, W. Kern, Synthetic Metals, 147, 91 (2004).
    [13] D. Braun, A. Heeger, J. Appl. Phys. Lett., 58, 1982(1991).
    [14] A. Kraft, A. C. Grimsdale, A. B. Holmes, Angew. Chem. Int. Ed., , 37, 402 (1998).
    [15] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. dos Santos, J. L. Bredas, M. Logdlund,; W. R. Salaneck, Nature, 397, 121 (1999).
    [16] N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend,; A. B. Holmes, Nature, 365, 628 (1993).
    [17] I. Sokolik, Z. Yang, F. E. Karasz, D. C. J. Morton, Appl. Phys. Commun., 75, 3584 (1993).
    [18] L. Liao, L. Ding, F. E. Karasz, Y. Pang, J. Polym. Sci.: Part A: Polym. Chem., 43, 2800 (2005).
    [19] Y.-L. Fan, K.-F. Lin, J. Polym. Sci.: Part A: Polym. Chem., 43, 2520 (2005).
    [20] J. A. Mikroyannidis, A. V. Kazantzis, J. Polym. Sci.: Part A: Polym. Chem., 43, 4486 (2005).
    [21] K.-S. Lee, Y.-H. Kim, Y. Lee, J. Jang, S.-K. Kwon, J. Polym. Sci.: Part A: Polym. Chem., 43, 2316 (2005).
    [22] J. A. Mikroyannidis, H. Hlídková, D. Výprachtický, V. Cimrová, J. Polym. Sci.: Part A: Polym. Chem., 43, 3079 (2005).
    [23] D. Oelkrug, A. Tompert, J. Gierschner, H. J. Egelhaaf, M. Hanack, M. Hohloch, E. Steinhuber, J. Phys. Chem. B, 102, 902 (1998).
    [24] M. Zheng, A. M. Sarker, E. E. Gurel, P. M. Lahti, F.E. Karasz, Macromolecules, 33, 7426 (2000).
    [25] M. Zheng, L. Ding, E. E. Gurel, P. M. Lahti, F. E. Karasz, Macromolecules, 34, 4124 (2001).
    [26] J. L. Hedrick, R. Twieg, Macromolecules, 25, 2021 (1992).
    [27] S. W. Hwang, Y. Chen, Macromolecules, 34, 2981 (2001).
    [28] E. E. Gűrel, S. T. Pasco, F. E. Karasz, Polymer, 41, 6969 (2000).
    [29] Y. Chen, S. W. Hwang, Y. H. Yu, Polymer, 44, 3827 (2003).
    [30] J. L. Hedrick, R. Twieg, Macromolecules, 25, 2021 (1992).
    [31] S. W. Hwang, Y. Chen, Macromolecules, 34, 2981 (2001).
    [32] Y. H. Yu, Y. Chen, J. Polym. Sci. Part A: Polym. Chem., 41, 2765 (2003).
    [33] 蕭如娟,科儀新知,9, 65 (1988).
    [34] D. Braun, A. J. Heeger, Appl. Phys. Lett., 58, 1982 (1990).
    [35] K. Yoshino, M. Hirohata, R. Hidayat, K. Tada, M. Ozaki, M. Teraguchi, T. Matsuda, T. Sada, S. V. Frolov, M. Shkunov, Z.V. Vardeny, M. Hamaguchi, Synth. Met., 91:283 (1997).
    [36] C. Weder, M. S. Wrighton, Macromolecules, 29, 5157 (1996).
    [37] X. Zhan, Y. Liu, D. Zhu, W. Huang, Q. Gong, Chem. Mater., 13, 1540 (2001).
    [38] S. H. Lee, T. Nakamura, T. Tsutsui, Organic Letters, 3, 2005 (2001).
    [39] K. Tada, M. Onoda, M. Hirohata, T. Kawai, K. Yoshino, Jpn. J. Appl. Phys., 35, L251 ± L253 (1996).
    [40] C. Weder, C. Sarwa, A. Montali, C. Bastiaansen, P. Smith, Science, 279, 835 (1998).
    [41] A. Montali, P. Smith, C. Weder, Synth. Met., 97, 123 (1998).
    [42] P. Wautelet, M. Moroni, L. Oswald, J. L. Moigne, A. Pham, J. Y. Bigot. Macromolecules, 29, 446 (1996).
    [43] C. H. Krauch, S. Farid, G.O. Schenk, Chem. Ber., 99, 625 (1966).
    [44] Y. Chen, J. L. Geh, Polymer, 37, 4473 (1996).
    [45] Y. Huang, Z. Y. Lu, Q. Peng, Q. Jiang, R. G. Xie, S. H. Han, L. G. Dong, J. B. Peng, Y. Cao, M. G. Xie, Mater. Chem. Phys., 93, 95 (2005).
    [46] Y. Huang, Z. Y. Lu, Q. Peng, R. G. Xie, M. G. Xie, J. B. Peng, Y. N. Cao, J. Mater. Sci., 40, 601 (2005).
    [47] V. P. Barberis, J. A. Mikroyannidis, V. Cimrová, J. Polym. Sci.: Part A: Polym. Chem., 44, 5752 (2006).
    [48] A. R. A. Palmans, P. Smith, C. Weder, Macromolecules, 32, 4677 (1999).
    [49] A. R. Brown, D. D. C. Bradley, J. H. Burroughes, R. H. Friend, N. C. Greenham, P. L. Burn, A. B. Holmes, A. Kraft, Appl. Phys. Lett., 61, 2793 (1992).
    [50] S. Aratani, C. Zhang, K. Pakbaz, S. Hoger, F. Wudl, A. J. Heeger, J. Electron. Mater., 22, 745 (1993).
    [51] C. Zhang, S. Hoger, K. Pakbaz, F. Wudl, A. J. Heeger, J. Electron. Mater., 23, 453 (1994).
    [52] M. Yoshida, A. Fujii, Y. Ohmori, K. Yoshino, Jpn. J. Appl. Phys., 34, 1546 (1995).
    [53] K. M. Yeh and Y. Chen, J. Polym. Sci.: Part A: Polym. Chem., 44, 5364 (2006).
    [54] J. L. Hedrick, R. Twieg, Macromolecules, , 25, 2021 (1992).
    [55] N. Lanzetta, M. Malinconico, E. Martuscell, M. G. Volpe, J. Polym. Sci. Part A: Polym. Chem., 31, 1315 (1993).
    [56] L. Calandelli, E. Di Pace, P. Laurienzo, M. Malinconico, M. G. Volpe, J. Polym. Sci. Part B: Polym. Phys., 32, 1249 (1994).
    [57] R. Brutting, P. Pösch, P. Strohriegl, Macromol. Chem. Phys., 198, 2743 (1997).
    [58] J. L. Hedrick, Polym. Bull., 25, 543 (1991).
    [59] R-Q Zheng, E-Q Chen, S. Z. D. Cheng, F. Xie, D. Yan, T. He, V. Percec, P. Chu, G. Ungar, Macromlecules, 32, 6981 (1999).
    [60] V. Percec, Y. Tsuda, Polymer, 32, 661 (1991).
    [61] D. L. Brydon, I. S. Fisher, J. Emans, D. M. Smith, Polymer, 30, 619 (1989).
    [62] H. Tokuhisa, M. Era, T. Tsutsui, Adv. Mater., 10, 404 (1998).
    [63] J.-I. Jin, E.-J. Choi, R. W. Lenz, Polym. J., 18, 66 (1986).
    [64] Turro, N. J. Modern Molecular Photochemistry, Mill Valley, Calif.:University Science Books, 170 (1991).
    [65] J.-I. Lee, I.-N. Kang, D.-H. Hwang, H.-K. Shim, Chem. Mater., 8, 1928 (1996).
    [66] L. Ding, F. E. Karasz, L. Zhiqun, Z. Min, Macromolecules, 34, 9183 (2001)
    [67] N. S. Cho, D.-H. Hwang, J.-I. Lee, B.-J. Jung, H.-K. Shim, Macromolecules, 35,1224 (2002) .
    [68] J. Morgado, F. Cacialli, R.H. Friend, R. Iqbal, G. Yahioglu, L. R. Milgrom, S. C. Moratti, A. B. Holmes, Chemical Physics Letters, 325, 552 (2000).
    [69] 翁文國;工業材料雜誌,第156期,P.75,1999年12月。
    [70] 劉瑞祥“液晶之基礎與應用”國立編譯館,1999年,1版。
    [71] S. L. Kwolek, U.S. Pat., 3,671,542 (1972).
    [72] H. Blades, U.S. Pat., 3,869,429 (1972).
    [73] H. Blades, U.S. Pat., 3,869,430 (1972).
    [74] W. J. Jackson and H.F. Kuhfuss, J. Polym. Sci. Polym. Chem. Ed., 14, 2043 (1976).
    [75] J. F. Rusling, S. L. Suib, Adv. Mater., 12, 922 (1994).
    [76] 楊豐瑜;化工資訊,第三期,P.18,(2002).
    [77] W. A. Herrmann, C.-P. Reisinger, Michael Spiegler, Journal of Organometallic Chemistry, 557, 93 (1998).
    [78] J. P. Genet, M. Savignac, Journal of Organometallic Chemistry, 576 , 305 (1999)
    [79] R. N. Johnson, A. G. Farnham, R. A. Clendinning, W. F. Hale, C. N. Merriam, J. Polym. Sci. Part A-1, 5, 2375 (1967).
    [80] K. R. Carter, H. Jonsson, R. Twieg, R. D. Miller, J. L. Hedrick, Polym. prepr. (Am. Chem. Soc., Div. Polm. Chem. ), 33 (1), 388 (1992).
    [81] W. H. Beecer, J. K. Stille, Macromolecules, 12, 1033 (1979).
    [82] K. Kim, S. Y. Park, Y. J. Kim, N. Kim, S. I. Hong, H. Sasabe, J. Appl. Polym. Sci., 46, 1 (1992).
    [83] F. A. Bottino, G. Di Pasquale, A. Pollicino, J. Polym. Sci., Part A: Polym. Chem., 33, 843 (1995).
    [84] J. L. Hedrick, J. W. Labadie, Macromolecules, 23, 1561 (1990).
    [85] H. R. Kricheldorf, G. Schwartz, J. Erxleben, Makromol. Chem., 189, 2255 (1988).
    [86] K. R. Carter, H. Jonsson, R. Twieg, R. D. Miller, J. L. Hedrick, Polym. prepr. (Am. Chem. Soc., Div. Polm. Chem. ), 33 (1), 388 (1992).
    [87] J. L. Hedrick and R. Twieg, Macromolecules, 25, 2021 (1992).
    [88] Y. Liu, M. S. Liu, A. K.-Y. Jen, Acta Polym., 50, 105 (1999).
    [89] Y. Chen, S. W. Hwang, T. H. Yu, Polymer, 44, 3827 (2003).
    [90] B. T. Storey, J. Polym. Sci. Part A. 3 265 (1965).
    [91] S. W. Hwang, Y. Chen, Macromolecules, 35, 5438 (2002).
    [92] S. W. Hwang, S. H. Chen, Y. Chen, J. Polym. Sci. Part A: Polym. Chem., 40, 2215 (2002).
    [93] C. J. Tsai, Y. Chen, J. Polym. Sci.: Part A: Polym. Chem., 40, 293 (2002).
    [94] Z. Bao, Y. Chen, R. Cai, L. Yu, Macromolecules, 26, 5281 (1993).
    [95] S. H. Chen, Y. Chen, J. Polym. Sci.: Part A: Polym. Chem., 42, 5900 (2004).
    [96] S. H. Chen, S. W. Hwang, Y. Chen, J. Polym. Sci.: Part A: Polym. Chem., 42, 883 (2004).
    [97] S. Bi, Y. Zhang, H. Bu, R. R. Luise, J. Z. Bu, J. Polym. Sci. Part A: Polym. Chem., 37, 3763 (1999).
    [98] H. Nava, H Jonsson, V. Percec, Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.), 27(2), 191 (1986).
    [99] C. Ober, J.-I. Jin, R. W. Lenz, Polym. J., 14, 9 (1982).
    [100] K. J. K. Semmler, T. J. Dingemans, E. T. Samulski, Liquid Crystals, 24, 799 (1998).
    [101] R. W. Lenz, Polym. J., 17, 105 (1985).

    下載圖示 校內:2010-05-25公開
    校外:2012-05-25公開
    QR CODE