| 研究生: |
蔡成章 Tsai, Cheng-Jang |
|---|---|
| 論文名稱: |
側鏈含香豆素團基發光高分子的合成與光電性質 The Synthesis and Optoelectronic Properties of Electroluminescent Polymers Containing Coumarin Side Chains |
| 指導教授: |
陳雲
Chen, Yun |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 173 |
| 中文關鍵詞: | 發光高分子 、香豆素 |
| 外文關鍵詞: | PLED, Coumarin |
| 相關次數: | 點閱:47 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要合成新的電激發光共聚高分子材料,這些材料可分成三種類型:(1)含雙鍵之全共振[poly(p-phenylenevinylene); PPV]發光主鏈(P1)以及側鏈含拉電子的7-氧-4-甲基香豆素(7-oxy-4-methylcoumarin, OMC)團基(P2);(2)含二苯乙烯苯(1,4-distyrylbenzene, DSB)衍生物之孤立發光主鏈(P3 and P5)和側鏈含拉電子的OMC團基(P4 and P6)以及相對應模式化合物(M1-M3);(3)含三鍵之全共振poly[2,5-dialkoxy-p-phenylene ethynylene-2,7-(9,9-dihexylfluorene ethynylene)]s (PPEF)發光主鏈(P7)以及側鏈含拉電子的OMC團基(P8)。肇因於高分子(P2, P4, P6, and P8)主鏈貢獻之發光,均分別和相對映模式高分子(P1, P3, P5, and P7)相似。因此,可斷定能量從P2, P4, P6和P8的OMC團基完全地轉移到其主鏈上。高分子元件的電激發光有藍光(P5 and P6)和綠光(P1, P2, P3 and P4)及黃光(P7 and P8)。然而OMC團基電子傳送特質而增加了P2, P4, P6和P8的電子親和性。OMC團基的拉電子特質,可使元件的起始電壓降低並且提高最大亮度。其中,P2因為OMC團基而呈現較快的光交聯速率,因此而製成圖型發光的PLED元件。
此外,吾人亦合成一系列主鏈含噁二唑(1,3,4-oxadiazole, OXD)團基與不同脂肪長度之聚醚(PO5-PO10 and PO12)以及相對應模式化合物(MO5-MO10 and MO12)。此聚醚與模式化合物都具有特殊的反奇偶效應之液晶現象。在(ITO/PEDOT/P7+PO7/Ca:Al)掺雜元件中,因OXD團基的拉電子特質,亦可使元件的起使電壓降低並且提高最大亮度。
In this investigation, we synthesized new polymeric electroluminescent (EL) materials, which can be divided into three parts: (1) poly(p-phenyleneviny1ene) (PPV) derivatives P1 and P2, containing hexyloxy side groups and 7-oxy-4-methylcoumarin (OMC) groups via hexyloxy spacer, respectively; (2) four copolyethers (P3-P6) consisting of two isolated emitting chromophores [2,5-dihexyloxy-1,4-distyrylbenzene (HODSB) and 2,5-dihexyloxy-1,4- di(4-methylenestyryl)benzene (HOMDSB) for P3 and P4, 2,5-dihexyl-1,4-distyrylbenzene (HDSB) and HOMDSB for P5 and P6 in the backbone, in which P4 and P6 further contain electron-transporting chromophores (OMC) in the side chain; (3) poly[2,5-dialkoxy-p-phenyleneethynylene-2,7-(9,9-dihexylfluorene ethynylene)]s (PPEF) consisting of conjugated emitting chromophores of the backbone and pendant hexyloxy groups (P7) or pendant OMC chromophores via flexible spacer (P8). The emissions of polymers (P2, P4, P6, and P8) and corresponding model polymers (P1, P3, P5, and P7) films are similar which is attributed to polymer backbone, respectively. Accordingly, efficient energy transfer from the OMC chromophores to polymer backbone occurred readily in P2, P4, P6, and P8. Double-layer EL devices revealed blue (P5 and P6), green (P1, P2, P3 and P4) and yellow (P7 and P8) electroluminescence, respectively. The electron affinity of P2, P4, P6, and P8 were enhanced by introducing electron-transporting OMC chromophores. Moreover, incorporation of OMC side groups effectively reduced turn-on electric field and enhanced luminance maxima of the EL devices due to increased electron affinity. However, P2 exhibited higher photo-crosslinking rated due to pendant 4-methylcoumarin chromophores. Patterned emission from PLED utilizing this effect was also demonstrated.
Furthermore, seven polyoxadiazoles (PO5-PO10 and PO12) have been also synthesized. Corresponding model compounds (MO5-MO10 and MO12), consisting of two terminal mesogenic 2,5-bisphenyl-1,3,4-oxadiazole units and central polymethylene spacers, were also prepared for comparison. Both polymers and model compounds exhibit extraordinary odd-even effect, i.e. odd ones show higher transition emperatures (Tm, Ti). Moreover, oxadiazol groups effectively reduced turn-on electric field and enhanced luminance maxima of the EL devices (ITO/PEDOT/P7+PO7/Ca:Al) dued to increase electron affinity.
[1] M. Pope, H. Kallmann, P. Magnante, J. Chem. Phys., 38, 2024 (1936).
[2] C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett, 51, 913 (1987).
[3] J. H. Burrououghes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. MacKay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature, 347, 539 (1990).
[4] 陳金鑫;光訊,第65期,P.12,民國86年4月.
[5] D. Braun, A. J. Heeger, Appl. Phys. Lett., 58, 1982 (1995).
[6] I.N. Kang, D.H. Hwang, H.K. Shim, T. Zyung, J.J. Kim, Macromolecules, 29, 165 (1996).
[7] S. Tasch, C. Brandstaetter, F. Meghdadi, G. Leising, G. Froyer, L. Athouel, Adv. Mater., 9, 33 (1997).
[8] J. Kido, M. Kimura, K. Nagai, Science, 267, 1332 (1995).
[9] T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, J. C. Sturm, Appl. Phys. Lett., 72, 519 (1998).
[10] C. D. Müller, A. Falcou, N. Reckefuss, M. Rojahn, V. Wiederhirn, P. Rudati, H. Frohne, O. Nuyken, H. Becker, K. Meerholz. Nature, (London) 421, 829 (2003).
[11] A. Pogantsch, G. Trattnig, E. Zojer, H. Tillmann, H.H. Hörhold, U. Scherf, G. Langer, W. Kern, Synthetic Metals, 138, 85 (2003).
[12] C. Buchgraber, J. Spanring, A. Pogantsch, M. Turner, W. Kern, Synthetic Metals, 147, 91 (2004).
[13] D. Braun, A. Heeger, J. Appl. Phys. Lett., 58, 1982(1991).
[14] A. Kraft, A. C. Grimsdale, A. B. Holmes, Angew. Chem. Int. Ed., , 37, 402 (1998).
[15] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. dos Santos, J. L. Bredas, M. Logdlund,; W. R. Salaneck, Nature, 397, 121 (1999).
[16] N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend,; A. B. Holmes, Nature, 365, 628 (1993).
[17] I. Sokolik, Z. Yang, F. E. Karasz, D. C. J. Morton, Appl. Phys. Commun., 75, 3584 (1993).
[18] L. Liao, L. Ding, F. E. Karasz, Y. Pang, J. Polym. Sci.: Part A: Polym. Chem., 43, 2800 (2005).
[19] Y.-L. Fan, K.-F. Lin, J. Polym. Sci.: Part A: Polym. Chem., 43, 2520 (2005).
[20] J. A. Mikroyannidis, A. V. Kazantzis, J. Polym. Sci.: Part A: Polym. Chem., 43, 4486 (2005).
[21] K.-S. Lee, Y.-H. Kim, Y. Lee, J. Jang, S.-K. Kwon, J. Polym. Sci.: Part A: Polym. Chem., 43, 2316 (2005).
[22] J. A. Mikroyannidis, H. Hlídková, D. Výprachtický, V. Cimrová, J. Polym. Sci.: Part A: Polym. Chem., 43, 3079 (2005).
[23] D. Oelkrug, A. Tompert, J. Gierschner, H. J. Egelhaaf, M. Hanack, M. Hohloch, E. Steinhuber, J. Phys. Chem. B, 102, 902 (1998).
[24] M. Zheng, A. M. Sarker, E. E. Gurel, P. M. Lahti, F.E. Karasz, Macromolecules, 33, 7426 (2000).
[25] M. Zheng, L. Ding, E. E. Gurel, P. M. Lahti, F. E. Karasz, Macromolecules, 34, 4124 (2001).
[26] J. L. Hedrick, R. Twieg, Macromolecules, 25, 2021 (1992).
[27] S. W. Hwang, Y. Chen, Macromolecules, 34, 2981 (2001).
[28] E. E. Gűrel, S. T. Pasco, F. E. Karasz, Polymer, 41, 6969 (2000).
[29] Y. Chen, S. W. Hwang, Y. H. Yu, Polymer, 44, 3827 (2003).
[30] J. L. Hedrick, R. Twieg, Macromolecules, 25, 2021 (1992).
[31] S. W. Hwang, Y. Chen, Macromolecules, 34, 2981 (2001).
[32] Y. H. Yu, Y. Chen, J. Polym. Sci. Part A: Polym. Chem., 41, 2765 (2003).
[33] 蕭如娟,科儀新知,9, 65 (1988).
[34] D. Braun, A. J. Heeger, Appl. Phys. Lett., 58, 1982 (1990).
[35] K. Yoshino, M. Hirohata, R. Hidayat, K. Tada, M. Ozaki, M. Teraguchi, T. Matsuda, T. Sada, S. V. Frolov, M. Shkunov, Z.V. Vardeny, M. Hamaguchi, Synth. Met., 91:283 (1997).
[36] C. Weder, M. S. Wrighton, Macromolecules, 29, 5157 (1996).
[37] X. Zhan, Y. Liu, D. Zhu, W. Huang, Q. Gong, Chem. Mater., 13, 1540 (2001).
[38] S. H. Lee, T. Nakamura, T. Tsutsui, Organic Letters, 3, 2005 (2001).
[39] K. Tada, M. Onoda, M. Hirohata, T. Kawai, K. Yoshino, Jpn. J. Appl. Phys., 35, L251 ± L253 (1996).
[40] C. Weder, C. Sarwa, A. Montali, C. Bastiaansen, P. Smith, Science, 279, 835 (1998).
[41] A. Montali, P. Smith, C. Weder, Synth. Met., 97, 123 (1998).
[42] P. Wautelet, M. Moroni, L. Oswald, J. L. Moigne, A. Pham, J. Y. Bigot. Macromolecules, 29, 446 (1996).
[43] C. H. Krauch, S. Farid, G.O. Schenk, Chem. Ber., 99, 625 (1966).
[44] Y. Chen, J. L. Geh, Polymer, 37, 4473 (1996).
[45] Y. Huang, Z. Y. Lu, Q. Peng, Q. Jiang, R. G. Xie, S. H. Han, L. G. Dong, J. B. Peng, Y. Cao, M. G. Xie, Mater. Chem. Phys., 93, 95 (2005).
[46] Y. Huang, Z. Y. Lu, Q. Peng, R. G. Xie, M. G. Xie, J. B. Peng, Y. N. Cao, J. Mater. Sci., 40, 601 (2005).
[47] V. P. Barberis, J. A. Mikroyannidis, V. Cimrová, J. Polym. Sci.: Part A: Polym. Chem., 44, 5752 (2006).
[48] A. R. A. Palmans, P. Smith, C. Weder, Macromolecules, 32, 4677 (1999).
[49] A. R. Brown, D. D. C. Bradley, J. H. Burroughes, R. H. Friend, N. C. Greenham, P. L. Burn, A. B. Holmes, A. Kraft, Appl. Phys. Lett., 61, 2793 (1992).
[50] S. Aratani, C. Zhang, K. Pakbaz, S. Hoger, F. Wudl, A. J. Heeger, J. Electron. Mater., 22, 745 (1993).
[51] C. Zhang, S. Hoger, K. Pakbaz, F. Wudl, A. J. Heeger, J. Electron. Mater., 23, 453 (1994).
[52] M. Yoshida, A. Fujii, Y. Ohmori, K. Yoshino, Jpn. J. Appl. Phys., 34, 1546 (1995).
[53] K. M. Yeh and Y. Chen, J. Polym. Sci.: Part A: Polym. Chem., 44, 5364 (2006).
[54] J. L. Hedrick, R. Twieg, Macromolecules, , 25, 2021 (1992).
[55] N. Lanzetta, M. Malinconico, E. Martuscell, M. G. Volpe, J. Polym. Sci. Part A: Polym. Chem., 31, 1315 (1993).
[56] L. Calandelli, E. Di Pace, P. Laurienzo, M. Malinconico, M. G. Volpe, J. Polym. Sci. Part B: Polym. Phys., 32, 1249 (1994).
[57] R. Brutting, P. Pösch, P. Strohriegl, Macromol. Chem. Phys., 198, 2743 (1997).
[58] J. L. Hedrick, Polym. Bull., 25, 543 (1991).
[59] R-Q Zheng, E-Q Chen, S. Z. D. Cheng, F. Xie, D. Yan, T. He, V. Percec, P. Chu, G. Ungar, Macromlecules, 32, 6981 (1999).
[60] V. Percec, Y. Tsuda, Polymer, 32, 661 (1991).
[61] D. L. Brydon, I. S. Fisher, J. Emans, D. M. Smith, Polymer, 30, 619 (1989).
[62] H. Tokuhisa, M. Era, T. Tsutsui, Adv. Mater., 10, 404 (1998).
[63] J.-I. Jin, E.-J. Choi, R. W. Lenz, Polym. J., 18, 66 (1986).
[64] Turro, N. J. Modern Molecular Photochemistry, Mill Valley, Calif.:University Science Books, 170 (1991).
[65] J.-I. Lee, I.-N. Kang, D.-H. Hwang, H.-K. Shim, Chem. Mater., 8, 1928 (1996).
[66] L. Ding, F. E. Karasz, L. Zhiqun, Z. Min, Macromolecules, 34, 9183 (2001)
[67] N. S. Cho, D.-H. Hwang, J.-I. Lee, B.-J. Jung, H.-K. Shim, Macromolecules, 35,1224 (2002) .
[68] J. Morgado, F. Cacialli, R.H. Friend, R. Iqbal, G. Yahioglu, L. R. Milgrom, S. C. Moratti, A. B. Holmes, Chemical Physics Letters, 325, 552 (2000).
[69] 翁文國;工業材料雜誌,第156期,P.75,1999年12月。
[70] 劉瑞祥“液晶之基礎與應用”國立編譯館,1999年,1版。
[71] S. L. Kwolek, U.S. Pat., 3,671,542 (1972).
[72] H. Blades, U.S. Pat., 3,869,429 (1972).
[73] H. Blades, U.S. Pat., 3,869,430 (1972).
[74] W. J. Jackson and H.F. Kuhfuss, J. Polym. Sci. Polym. Chem. Ed., 14, 2043 (1976).
[75] J. F. Rusling, S. L. Suib, Adv. Mater., 12, 922 (1994).
[76] 楊豐瑜;化工資訊,第三期,P.18,(2002).
[77] W. A. Herrmann, C.-P. Reisinger, Michael Spiegler, Journal of Organometallic Chemistry, 557, 93 (1998).
[78] J. P. Genet, M. Savignac, Journal of Organometallic Chemistry, 576 , 305 (1999)
[79] R. N. Johnson, A. G. Farnham, R. A. Clendinning, W. F. Hale, C. N. Merriam, J. Polym. Sci. Part A-1, 5, 2375 (1967).
[80] K. R. Carter, H. Jonsson, R. Twieg, R. D. Miller, J. L. Hedrick, Polym. prepr. (Am. Chem. Soc., Div. Polm. Chem. ), 33 (1), 388 (1992).
[81] W. H. Beecer, J. K. Stille, Macromolecules, 12, 1033 (1979).
[82] K. Kim, S. Y. Park, Y. J. Kim, N. Kim, S. I. Hong, H. Sasabe, J. Appl. Polym. Sci., 46, 1 (1992).
[83] F. A. Bottino, G. Di Pasquale, A. Pollicino, J. Polym. Sci., Part A: Polym. Chem., 33, 843 (1995).
[84] J. L. Hedrick, J. W. Labadie, Macromolecules, 23, 1561 (1990).
[85] H. R. Kricheldorf, G. Schwartz, J. Erxleben, Makromol. Chem., 189, 2255 (1988).
[86] K. R. Carter, H. Jonsson, R. Twieg, R. D. Miller, J. L. Hedrick, Polym. prepr. (Am. Chem. Soc., Div. Polm. Chem. ), 33 (1), 388 (1992).
[87] J. L. Hedrick and R. Twieg, Macromolecules, 25, 2021 (1992).
[88] Y. Liu, M. S. Liu, A. K.-Y. Jen, Acta Polym., 50, 105 (1999).
[89] Y. Chen, S. W. Hwang, T. H. Yu, Polymer, 44, 3827 (2003).
[90] B. T. Storey, J. Polym. Sci. Part A. 3 265 (1965).
[91] S. W. Hwang, Y. Chen, Macromolecules, 35, 5438 (2002).
[92] S. W. Hwang, S. H. Chen, Y. Chen, J. Polym. Sci. Part A: Polym. Chem., 40, 2215 (2002).
[93] C. J. Tsai, Y. Chen, J. Polym. Sci.: Part A: Polym. Chem., 40, 293 (2002).
[94] Z. Bao, Y. Chen, R. Cai, L. Yu, Macromolecules, 26, 5281 (1993).
[95] S. H. Chen, Y. Chen, J. Polym. Sci.: Part A: Polym. Chem., 42, 5900 (2004).
[96] S. H. Chen, S. W. Hwang, Y. Chen, J. Polym. Sci.: Part A: Polym. Chem., 42, 883 (2004).
[97] S. Bi, Y. Zhang, H. Bu, R. R. Luise, J. Z. Bu, J. Polym. Sci. Part A: Polym. Chem., 37, 3763 (1999).
[98] H. Nava, H Jonsson, V. Percec, Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.), 27(2), 191 (1986).
[99] C. Ober, J.-I. Jin, R. W. Lenz, Polym. J., 14, 9 (1982).
[100] K. J. K. Semmler, T. J. Dingemans, E. T. Samulski, Liquid Crystals, 24, 799 (1998).
[101] R. W. Lenz, Polym. J., 17, 105 (1985).