| 研究生: |
楊順通 Yang, Shun-Tung |
|---|---|
| 論文名稱: |
大量變形AISI 316L不銹鋼纖維熱磁特性及α'→ γ相轉之研究 Thermomagnetic Property and α'→ γ Transformation of AISI 316L Stainless Steel Fibers by Severe Deformation |
| 指導教授: |
黃文星
Hwang, Weng-Sing |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 173 |
| 中文關鍵詞: | 熱磁分析 、相轉變 、沃斯田鐵不銹鋼 |
| 外文關鍵詞: | thermomagnetic analysis, phase transformation, austenitic stainless steel |
| 相關次數: | 點閱:90 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微米級的金屬纖維一般使用集束拉伸法,藉由反覆的拉伸與中間熱處理抽製而成。因此在加工過程中,因它們會影響到材料的結構及其機械性質,其拉伸應變量及熱處理溫度的條件控制就很重要。本研究主要使用熱磁分析儀探討不同拉伸應變率的AISI 316L不銹鋼纖維在各種不同熱履歷下的熱磁特性,同時也探討其應變誘發麻田散鐵(α')到沃斯田鐵(γ)的相轉變以及在不同溫度熱處理後的拉伸機械性質。
在300〜520 ℃的時效研究發現,對於冷拉伸應變率大於2.67以上的纖維,當溫度從50 ℃升到約460 ℃時,其磁化增量到一最大值,其主要是由於再相轉麻田散鐵相(α'r)的生成所致。從300 ℃持溫2.5小時後的線上即時磁力顯微影像,觀察到材料磁域結構的成長,說明此係材料本身原有誘發麻田散鐵相的成長。而在冷卻的過程中,從熱磁曲線並無觀察到明顯的Ms溫度。
依據熱磁分析結果,發現經冷拉伸的AISI 316L不銹鋼纖維的升溫熱磁曲線可區分成三個α'→γ相轉區域,在整個相逆轉過程中,主要進行擴散式的相轉機制,不過對於拉伸應變率大於2.31的纖維,其熱磁曲線在625-640 ℃卻出現一個因為α'r延遲相轉變的溫度轉折點,此轉折點溫度隨著應變率之增加而稍微提高。在630-645 °C以上其磁化量會快速地下降,主要是因為α'和α'r同時以擴散及剪切機制進行相轉變。此結果說明了先前在達到最大磁化量所生成的α'r,由於含有較少的Nieq,因此以擴散及剪切機制進行相轉都會在較高的溫度發生。在冷卻的過程中,Ms溫度則是隨著纖維拉伸應變率的增加而下降。
當不銹鋼纖維經過6.16應變率的極度抽拉,其拉伸斷裂強度增加到2042 MPa,斷裂伸度則減少至1.8%。纖維在350〜450 ℃間進行不同溫度熱處理後,其拉伸強度之變化與升溫熱磁分析曲線有相同的趨勢,此說明了α'r相的生成會提高其拉伸強度。
Micron-sized stainless steel fibers are generally manufactured using the bundle-drawing process including repeated drawings and intermediate heat treatments. Therefore, the conditions of drawing strain and annealing temperature are of particular importance because they enable these materials to have various microstructures, which determine the mechanical properties. In this study, the evolution of the magnetic phase upon different thermal history in AISI 316L stainless steel fibers with various true strains are investigated using thermomagnetic analysis (TMA). The phase transformation from strain-induced martensite (α') to austenite (γ) and the tensile property under annealing at different temperatures are also studied.
The ageing study at 300-520 °C shows that the magnetization increases and reaches its maximum from 50 °C to 〜460 °C in cold-drawn fibers with a true strain of above 2.31. The peak magnetization may be resulted from the formation of a reformed martensite phase (α'r). In situ magnetic force microscopy observations reveal a growth of the magnetic domain structure after aging at 300 °C for 2.5 h. Results show that the ferromagnetic property increase during aging at lower annealing temperature resulted from the growth of existing α'-martensite. No significant Ms temperature signal was found in the TMA curves upon cooling.
According to the TMA, three transformation regions of α'→γ in cold-drawn 316L fibers were observed. Throughout the reverse process, the transformation is dominated by a diffusion-controlled mechanism. However, a shoulder which is a retarded transformation of α'r, appears at 625-640 °C in the TMA curve of the cold-drawn 316L fibers with a true strain of above 2.31. The shoulder shifted slightly to a higher temperature as the true strain increased. The magnetization rapidly decreases above 630-645 °C, which was attributed to the reversion of the existing α' and the reformed α' via shear and diffusion-controlled mechanisms simultaneously. The results show that the α'r formed before the maximum magnetization reversed in both mechanisms at higher temperature, which was due to lower Nieq content in the α'r. During the cooling process, the Ms temperature decreased as the true strain of fibers increased.
When the stainless steel fiber was drawn to a true strain of 6.16, the tensile strength increased to 2042 MPa, with a very low elongation of about 1.8%. The tendency in evolution of tensile strength for fibers annealed at 350-450 ℃ was consistent with the relatively thermomagnetic curve. It indicated that the increased tensile strength was attributed to the formation of the α'r phase.
參考文獻
1. P. Rudkowske, G. Rudkowska, J.O. Ström-Olsen, “The magnetic properties of sub-20-μm metallic fibers formed by continusous melt extraction”, Journal of Applied Physics , 69, 5017-5019 (1991).
2. R.D. Bruyne, “Bundle-drawn metal fibers”, Advanced Materials and Processes, 147, 33-34 (1995).
3. D.D.L. Chung, “Self-heating structural materials”, Smart Materials and Structures, 13, 562-565 (2004).
4. M.Z. Wu, H.H. He, Z.S. Zhao, X. Yao, “Electromagnetic and microwave absorbing properties of iron fibre-epoxy resin composites”, Journal of Physics D: Applied Physics, 33, 2398-2401 (2000).
5. S. Wen, D.D.L. Chung, “Electromagnetic interference shielding reaching 70 dB in steel fiber cement”, Cement and Concrete Research, 34, 329-332 (2004).
6. S.Y. Yang, C.Y. Chen, S.H. Parng, “Effects of conductive fibers and processing conditions on the electromagnetic shielding effectiveness of injection molded composites”, Polymer Composites, 23, 1003-1013 (2002).
7. K. Yamaji, S. Yamane, Y. Niimi, A. Sueoka, Y Nosé, “Strategy of leukocyte filtration for immunomodulation: development of stainless steel leukocyte filter”, Therapeutic Apheresis and Dialysis, 1, 63-66 (1997).
8. J.G. Liu, G.Q. Sun, F.L. Zhao, G.X. Wang, G. Zhao, L.K. Chen, B.L. Yi, Q. Xin, “Study of sintered stainless steel fiber felt as gas diffusion backing in air-breathing DMFC”, Journal of Power Sources, 133, 175-180 (2004).
9. H. Fu, B. Liao, B.C. Sun, A.P. Liu, F.J. Qi, Z.L. Ding, “Abrasion performances of stainless steel/carbon fiber reinforced polyetheretherketone (PEEK) friction material”, Key Engineering Materials, 329, 511-518 (2007).
10. P.S. Mangat, K. Gurusamy, “Corrosion resistance of steel fibres in concrete under marine exposure”, Cement and Concrete Research, 18, 44-54 (1988).
11. H. Fu, B. Liao, F.J. Qi, B.C. Sun, A.P. Liu, D.L. Ren, “The application of PEEK in stainless steel fiber and carbon fiber reinforced composites”, Composites Part B: Engineering, 39, 585-591 (2008).
12. H. Schaeffler, “Investment casting of high-hot strength 12% chrome steel”, Foundry Trade Journal, 108, 562-563 (1960).
13. J.W. Fu, Y.S.Yang, J.J. Guo, “Formation of a blocky ferrite in Fe–Cr–Ni alloy during directional solidification”, Journal of Crystal Growth, 311, 3661–3666 (2009).
14. A.F. Padilha, R.L. Plaut, P.R. Rios, “Annealing of cold-worked austenitic stainless steels”, ISIJ International, 43, 135-143 (2003).
15. A.F. Padilha, P.R. Rios, “Decomposition of austenite in austenitic stainless steels”, ISIJ International, 42, 325-337 (2002).
16. R.E. Schramm, R.P. Reed, “Stacking fault energies of seven commercial austenitic stainless steels”, Metallurgical Transactions, 6, 1345-1351 (1975).
17. G.H. Eichelmann, F.C. Hull, “The effect of composition of spontaneous transformation of austenite to martensite in 18-8-type stainless steel”, Transactions of American Society for Metals, 45, 77-104 (1953).
18. E.P. Butler, M.G. Burke, “Chromium depletion and martensite formation at grain boundaries in sensitized austenitic stainless steel”, Acta Metallurgica, 34, 557-570 (1986).
19. T. Angel, “Formation of martensite in austenitic stainless steels: effects of deformation, temperature, and composition”, Journal of the Iron and Steel Institute, 177, 165-174 (1954).
20. J.P. Bressanelli, A. Moskowitz, “Effects of strain rate, temperature, and composition on tensile properties of metastable austenitic stainless steels”, Transactions of American Society for Metals, 59, 223-239 (1966).
21. M.W. Bowkett, S.R. Keown, D.R. Harries, “Quench- and deformation-induced structures in two austenitic stainless steels”, Metal Science, 16, 499-517 (1982).
22. P.L. Mangonon, G. Thomas, “The martensite phases in 304 stainless steel”, Metallurgical Transactions, 1, 1577-1587 (1970).
23. P.L. Mangonon, G. Thomas, “Structure and properties of thermal-mechanically treated 304 stainless steel”, Metallurgical Transactions, 1, 1587-1594 (1970).
24. V. Seetharaman, R. Krishnan, “Influence of the martensitic transformation on the deformation behaviour of an AISI 316 stainless steel at low temperatures”, Journal of Materials Science, 16, 523-530 (1981).
25. T.H. Coleman, D.R.F. West, “Transformation cycling in an Fe-16 Cr-12 Ni alloy”, Metallography, 7, 203-214 (1974).
26. S.S. Hecker, M.G. Stout, K.P. Staudhammer, J.L. Smith, “Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel: part I magnetic measurements and mechanical behavior”, Metallurgical Transaction A, 13, 619-626 (1982).
27. L.E. Murr, K.P. Staudhamer, S.S. Hecker, “Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel: part I1. microstructural study”, Metallurgical Transaction A, 13, 627-635 (1982).
28. J. Singh, “Influence of deformation on the transformation of austenitic stainless steels”, Journal of Materials Science, 20, 3157-3166 (1985).
29. K. Nohara, Y. Ono, N. Ohashi, “Composition and grain-size dependencies of strain induced martensitic transformation in metastable austenitic stainless steels”, The Journal of the Iron and Steel Institute of Japan, 63, 212-222 (1977).
30. C.M. Wayman, H.K.D.H. Bhadeshia, “Phase transformations, nondiffusive”. In: Cahn, R.W. and Haasen, P. (Eds.). Physical Metallurgy. Fourth edition. Elsevier Science Publishers, Amsterdam, The Netherlands, 1507-1554 (1996).
31. J.R. Patel, M. Cohen, “Criterion for the action of applied stress in the martensitic transformation”, Acta Metallurgica, 1, 531-538 (1953).
32. G.B. Olson, M. Cohen, “A mechanism for the strain-Induced nucleation of martensitic transformations”, Journal of Less-Common Metals, 28, 107-118 (1972).
33. T. Suzuki, H. Kojima, K. Suzuki, T. Hashimoto, S. Koike, M. Ichihara, “Plastic deformation and martensitic transformation in an iron-base alloy”, Scripta Metallurgica, 10, 353-358 (1976).
34. X.F. Fang, W. Dahl, “Strain hardening and transformation mechanism of deformation-induced martensite transformation in metastable austenitic stainless steels”, Materials Science and Engineering A, 141, 189-198 (1991).
35. G.B. Olson, M. Cohen, “Kinetics of strain-induced martensitic nucleation”, Metallurgical Transaction A, 6, 791-795 (1975).
36. D.L. Johannsen, A. Kyrolainen, P.J. Ferreira, “Influence of annealing treatment on the formation of nano/submicron grain size AISI 301 austenitic stainless steels”, Metallurgical and Materials Transactions A, 37, 2325-2338 (2006).
37. S. Takaki, K. Tomimura, S. Ueda, “Effect of pre-cold-working on diffusional reversion of deformation induced martensite in metastable austenitic stainless steel”, ISIJ International, 34, 522-527 (1994).
38. M. Tokizane, N. Matsumure, K. Tzuzaki, T. Maki, I. Tamura, “Recrystallization and formation of austenite in deformed lath martensitic structure of low carbon steels”, Metallurgical Transaction A, 13, 1379 -1388 (1982).
39. T. Morikawa, K. Higashida, T. Sato, “Fine-grained structures developed along grain boundaries in a cold-rolled austenitic stainless steel”, ISIJ International, 42, 1527-1533 (2002).
40. K.B. Guy, E.P. Butler, D.R.F. West, “Reversion of bcc α' martensite in Fe- Cr-Ni austenitic stainless steels”, Metal Science, 17, 167-176 (1983).
41. L.F.M. Martins, R.L. Plaut, A.F. Padilha, “Effect of carbon on the cold-worked state and annealing of two 18wt%Cr-8wt%Ni austenitic stainless steels”, ISIJ International, 38, 572 -579 (1998).
42. S.S.M. Tavares, D. Fruchart, S. Miraglia, “A magnetic study of the reversion of martensite in a 304 stainless steel”, Journal of Alloys and Compounds, 307, 311-317 (2000).
43. K. Tomimura, S. Takaki, Y. Tokunaga, “Reversion mechanism from deformation induced martensite to austenite in metastable austenitic stainless steels”, ISIJ International, 31, 1431-1437 (1991).
44. S.W. Yang, J.E. Spruiell, “Cold-worked state and annealing behaviour of austensitic stainless steel”, Journal of Materials Science, 17, 677-690 (1982).
45. F.J. Humphreys, M. Hatherly, “Recrystallization and related annealing phenomena”, (Pergamon/Elsevier Science, Oxford, 1996).
46. S. Takaki, K. Tomimura, Y. Tokunaga, “Recrystallizing behavior of austenite martensitically reversed from deformation induced martensite”, Proceedings of International Conference on Stainless Steels, Chiba, ISIJ, 517-526 (1991).
47. T. Hirayama, M. Ogirima, “Influence of chemical composition on martensitic transformation in Fe-Cr-Ni stainless steel”, Journal of Japan Institute Metals, 34, 507-510 (1970).
48. K. Tomimura, S. Takaki, S. Tanimoto, Y. Tokunaga, “Optimal chemical composition in Fe -Cr-Ni alloys for ultra grain refining by reversion from deformation induced martensite”, ISIJ International, 31, 721-727 (1991).
49. W.C. Leslie, R.L. Miller, “The stabilization of austenite by closely-spaced boundaries”, Transactions of American Society for Metals, 57, 972-979 (1964).
50. T.S. Byun, N. Hashimoto, K. Farrell, “Temperature dependence of strain hardening and plastic instability behaviours in austenitic stainless steels. Acta Materialia, 52, 3889-3899 (2004).
51. V.F Zackay, E.R. Parker, D. Fahr, R. Busch, “The enhancement of ductility in high-strength steels”, Transactions of American Society for Metals, 60, 252-259 (1967).
52. A.K. De, J.G. Speer, D.K. Matlock, D.C. Murdock, M.C. Mataya, R.J. Comstock, “Deformation-induced phase transformation and strain hardening in type 304 austenitic stainless steel”, Metallurgical and Materials Transactions A, 37, 1875-1886 (2006).
53. J. Talonen, “Effect of strain-induced α’-martensite transformation on mechanical properties of metastable austenitic stainless steels”, PhD Thesis, Department of Mechanical Engineering, Helsinki University of Technology, Finland, (2007).
54. R.P. Reed, C.J. Guntner, “Stress-induced martensitic transformations in 18Cr–8Ni steel”, Transactions of the Metallurgical Society of AIME, 230, 1713-1720 (1964).
55. G.D. Huang, D.K. Matlock, G. Krauss, “Martensite formation, strain rate sensitivity, and deformation behavior of type 304 stainless steel sheet”, Metallurgical Transactions A, 20, 1239-1245 (1989).
56. G.P. Sanderson, D.T. Llewellyn, “Mechanical properties of standard austenitic stainless steels in the temperature range -196 to +800°C”, Journal of the Iron and Steel Institute, 207, 1129-1140 (1969).
57. A. Rosen, R. Jago, T. Kjer, “Tensile properties of metastable stainless steels”, Journal of Materials Science, 7, 870-876 (1972).
58. C.P. Livitsanos, P.F. Thomson, “The effect of temperature and deformation rate on transformation-dependent ductility of a metastable austenitic stainless steel”, Materials Science and Engineering, 30, 93-98 (1977).
59. H.K.D.H. Bhadeshia, “TRIP-assisted steels”, ISIJ International, 42, 1059-1060 (2002).
60. T. Narutani, G.B. Olson, M. Cohen, “Constitutive flow relations for austenitic steels during strain-induced martensitic transformation”, Journal de Physique, 43, 429-434 (1982).
61. K. Spencer, J.D. Embury, K.T. Conlon, M. Veron, Y. Brechet, “Strengthening via the formation of strain induced martensite in stainless steels“, Materials Science and Engineering A, 387, 873-881 (2004).
62. L.Å. Norström, “The relation between microstructure and yield strength in tempered low-carbon lath martensite with 5% nickel “, Metal Science, 10, 429-436 (1976).
63. D.J. Dyson, B. Holmes, “Effect of alloying additions on the lattice parameter of austenite”, Journal of the Iron and Steel Institute, 208. 469-474 (1970).
64. K.J. Irvin, D.T. Llewellyn, F.B. Pickering, “High-strength austenitic stainless steels”, Journal of the Iron and Steel Institute, 199, 153-175 (1961).
65. H. Smith, D.R.F. West, “Annealing of austenite formed by reversion from martensite in an Fe-16Cr-12Ni alloy”, Metals Technology, 1, 37-40 (1974).
66. A.N. Chukleb, V.P. Martynov, “Phase transformations γ→α during the ageing of 18-8 type steels previously reformed at a negative temperature”, The Physics of Metals and Metallography, 10, 80-83 (1960).
67. D.R. Harris, “Physical metallurgy of Fe-Cr-Ni austenitic steels”, Proceedings of International Conference on Mechanical Behaviour and Nuclear Applications of Stainless Steels at Elevated Temperatures, Varese, Italy, May, 1-14 (1981).
68. C.L. Briant, “Hydrogen assisted cracking of type 304 stainless steel”, Metallurgical Transaction A, 10, 181-189 (1979).
69. C.K. Mukhopadhyay, K.V. Kasiviswanathan, T. Jayakumar, B. Raj, “Acoustic emission from ageing-induced martensite formation in cold worked AISI type 304 stainless steel”, Scripta Metallurgica et Materialia, 30, 303-307 (1994).
70. F. Gauzzi, R. Montanari, G. Principi, A. Perin, M.E. Tata, “Martensite formation during heat treatments of AISI 304 steel with biphasic structure”, Materials Science and Engineering A, 273–275, 443-447 (1999).
71. D.N. Wasnik, G.K. Dey, V. Kain, I. Samajdar, “Precipitation stages in a 316L austenitic stainless steels”, Scripta Materialia, 49, 135-141 (2003).
72. E. Menéndez, J. Sort, M.O. Liedke, J. Fassbender, S. Suriñach, M.D. Baró, J. Nogués, “Controlled generation of ferromagnetic martensite from paramagnetic austenite in AISI 316L austenitic stainless steel”, Journal of Materials Research, 24, 565-573 (2009).
73. “Standard practice for x-ray determination of retained austenite in steel with near random crystallographic orientation”, ASTM E 975-95.
74. “Standard test method for tensile properties of single textile fibers”, ASTM D 3822-07.
75. M.J. Dickson, “The significance of texture parameters in phase analysis by x-ray diffraction”, Journal of applied Crystallography, 2, 176-180 (1969).
76. L. Zhang, S. Takahashi, Y. Kamada, H. Kikuchi, K. Ara, M. Sato, T. Tsukada, “Magnetic properties of SUS 304 austenitic stainless steel after tensile deformation at elevated temperatures”, Journal of Materials Science, 40, 2709-2711 (2005).
77. S.S.M. Tavares , M.R. da Silva, J.M. Neto, S. Miraglia, D. Fruchart, “Ferromagnetic properties of cold rolled AISI 304L steel”, Journal of Magnetism and Magnetic Materials, 242–245, 1391–1394 (2002).
78. A. Mitra, P.K. Srivastava, P.K. De, D.K. Bhattacharya, D.C. Jiles, ” Ferromagnetic properties of deformation-induced martensite transformation in AISI 304 stainless steel”, Metallurgical and Materials Transactions A, 35, 599-605 (2004).
79. K. Mumtaz, S. Takahashi, J. Echigoya, LF. Zhang, Y. Kamada, M. Sato, “Detection of martensite transformation in high temperature compressively deformed austenitic stainless steel by magnetic NDE technique”, Journal of Materials Science, 38, 3037-3050 (2003).
80. S. Takahashi, J. Echigoya, Z. Motoki, “Magnetization curves of plastically deformed Fe metals and alloys”, Journal of Applied Physics, 87, 805-813 (2000).
81. G. Herzer, “Grain size dependency of coercivity and permeability in nanocrystalline ferromagnets”, IEEE Transactions on Magnetics, 26, 1397-1402 (1990).
82. J. Talonen, P. Aspegren, H. Hänninen, “Comparison of different methods for measuring strain induced α'-martensite content in austenitic steels”, Materials Science and Technology, 20, 1506-1512 (2004).
83. J. Durnin, K.A. Ridal, “Determination of retained austenite in steel by x-ray diffraction”, Journal of The Iron and Steel Institute, 206, 60-67 (1968).
84. N. Nakada, H. Ito, Y. Matsuoka, T. Tsuchiyama, S. Takaki, “Deformation-induced martensitic transformation behavior in cold-rolled and cold-drawn type 316 stainless steels”, Acta Materialia, 58, 895-903 (2010).
85. F. Gauzzi, R. Montanari, G. Principi, M.E. Tata, “AISI 304 steel: anomalous evolution of martensitic phase following heat treatments at 400 ℃”, Materials Science and Engineering A, 438-440, 202-206 (2006).
86. C.L. Briant, A.M. Ritter, “The effect of cold work on the sensitization of 304 stainless steel”, Scripta Metallurgica, 13, 177-181 (1979).
87. E.A. Trillo, R. Beltran, J.G. Maldonado, R.J. Romero, L.E. Murr, W.W. Fisher, A.H. Advani, “Combined effects of deformation (strain and strain state), grain Size, and carbon content on carbide precipitation and corrosion sensitization in 304 stainless steel”, Materials Characterization, 35, 99-112 (1995).
88. C.L. Briant, A.M. Ritter, “The effect of martensite on the sensitization of low carbon 304 stainless steel”, Metallurgical Transactions A, 12, 910-913 (1981).
89. S.K. Ghosh, P. Mallick, P.P. Chattopadhyay, “Effect of reversion of strain induced martensite on microstructure and mechanical properties in an austenitic stainless steel”, Journal of Materials Science, 46, 3480–3487(2011)
90. S.H. Lee, J.C. Lee, J.Y. Choi, W.J. Nam, “Effects of deformation strain and aging temperature on strain aging behavior in a 304 stainless steel”, Metals and Materials International, 16, 21–26 (2010).
91. L. Kaufman, E.V. Clougherty, R.J. Weiss, “The lattice stability of metals-III. Iron”, Acta Metallurgica, 11, 323-335 (1963).
92. R.D.K. Misra, S. Nayak, P.K.C. Venkatasurya, V. Ramuni, M.C. Somani, L.P. Karjalainen, “Nanograined/ultrafine-grained structure and tensile deformation behavior of shear phase reversion-induced 301 austenitic stainless steel”, Metallurgical and Materials Transactions A, 41, 2162-2174 (2010).
93. A.F. Smith, “Low-temperature diffusion of chromium in a fine-grained austenitic stainless steel with varying dislocation densities”, Metal Science, 9, 425-429 (1975).
94. B. Weiss, R. Stickler, “Phase instabilities during high temperature exposure of 316 austenitic stainless steel”, Metallurgical Transactions A, 3, 851-866 (1972).
95. C.K. Mukhopadhyay, T. Jayakumar, K.V. Kasiviswanathan, B. Raj, “Study of ageing-induced α'-martensite formation in cold-worked AISI type 304 stainless steel using an acoustic emission technique“, Journal of Materials Science, 30, 4556-4560 (1995).
96. P. Marshal, Austenitic stainless steels: microstructure and mechanical properties, (Elsevier Applied Science Publishers, New York, 1984).
97. E.A. Trillo, L.E. Murr, “Effects of carbon content, deformation, and interfacial energetics on carbide precipitation and corrosion sensitization in 304 stainless steel”, Acta Materialia, 47, 235-245 (1999).
98. N. Parvathavarthini, R.K. Dayal, “Influence of chemical composition, prior deformation and prolonged thermal aging on the sensitization characteristics of austenitic stainless steels”, Journal of Nuclear Materials, 305, 209-219 (2002).
99. R. Beltran, J.G. Maldonado, L.E. Murr, W.W. Fisher, “Effects of train and grain size on carbide precipitation and corrosion sensitization behavior in 304 stainless steel”, Acta Materialia, 45, 4351-4360 (1997).
100. C.L. Briant and A.M. Ritter, “The effects of deformation induced martensite on the sensitization of austenitic stainless steels”, Metallurgical Transactions A, 11, 2009-2017 (1980).
101. L.S. Darken, R.W. Gurry, Physical chemistry of metals, (McGraw-Hill, New York, 1953)
102. P. Antoine, B. Soenen, N. Akdut, “Static strain aging in cold rolled metastable austenitic stainless steels”, Materials science forum, 539-543, 4891-4896 (2007).
103. T. Juuti, L.P. Karjalainen, R. Ruoppa, T. Taulavuori, “Static strain ageing in some austenitic stainless steels”, Materials science forum, 638-642, 3278-3283 (2010).
104. H. Smith, D.H.R. West, “The reversion of martensite to austenite in certain stainless steels”, Journal of Materials Science, 8, 1413-1420 (1973).
105. E.C. Bain, R.H. Aborn, J.J. B. Rutherford, “The nature and prevention of intergranular corrosion in austenitic stainless steels”, Transactions of the American Society for Steel Treating, 21, 481-509 (1933).