簡易檢索 / 詳目顯示

研究生: 楊培崙
Yang, Pei-lun
論文名稱: 微極彈性材料之壓印問題
Indentation problems of elastic micropolar materials
指導教授: 王雲哲
Wang, Yun-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 68
中文關鍵詞: 負勁度複合材微極性固體
外文關鍵詞: micropolar, viscoelastic, Cosserats
相關次數: 點閱:56下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 發展高勁度及高阻尼材料是目前研究尖端材料的方向之一。複合材料理論預
    測,含負勁度的二元複合材料,具有異常的高勁度及高阻尼。但近年的研究顯
    示,此類複合材料的穩定性仍有待深入了解。本研究探討一特殊的微極性固體
    材料,其楊氏勁度為負值,並將此負勁度當成內含物,埋入線彈性基材中,探
    討此複合系統的整體勁度。本文先討論一個二維離散系統,並分析其穩定性,
    結果顯示高勁度及高阻尼確實存在,但穩定性比一維系統弱。然後、使用
    COMSOL軟體,分析負勁度複合材料的有效勁度,所分析的三個例子如下,(1)
    平面應變方板含負勁度圓形內含物、(2) 二維Bousinesq問題含負勁度層、
    (3)Hertz接觸問題含負勁度層。 三個例子均顯示,有效勁度可藉由負勁度內含物
    而大幅提升。應力分析顯示,負勁度與正勁度交界面上,承受相當大的應力,
    此現象可解釋為何前人的實驗重複性不佳。連續體的穩定性分析,不在本論文
    的討論範圍。此外、微極性固體材料所具備的尺寸效應,亦不在本論文的討論
    範圍。

    In this thesis, a special Cosserats medium (a kind of micropolar medium),
    exhibiting negative stiffness, is considered for studying its modulus and viscoelastic
    damping properties in the form of a composite material. First, a two dimensional
    discrete model, hexagonal lattice structure, containing pre-chosen negative stiffness
    components was studied. The stability of the structure is analyzed in accordance with
    the Lyapunov indirect theorem. Strong motivations for this study come from the
    needs of fundamental understanding of negative stiffness effects on structures
    consisting of many degrees of freedom, as well as the symmetry of the structures. We
    use the finite element method, combined with the technique of the state space
    representation, to analyze the two-dimensional, nested hexagons composed of twoforce
    components that obey the constitutive relation of the standard linear solid.
    Effective stiffness and damping anomalies in terms of peaks and anti-peaks are
    observed in the meta-stable regime when the amount of negative stiffness is
    selectively tuned. According to the Lyapunov indirect stability theorem, the system as
    a whole is stable when the tuning stiffness is greater than a critical negative value, but
    meta-stable otherwise. The degree of meta-stability depends on viscosity in the
    components. Furthermore, stiffness anomalies may be easier to be experimentally
    observed from compression tests than hydrostatic or shear tests. Beyond the discrete
    model, three continuum models were studied. Namely, the circular inclusion in a
    square plate and two dimensional Boussinesq problem with sandwiched substrate.
    Both of the models show anomalies in effective stiffness when negative-stiffness
    inclusion is embedded.

    摘 要............................................................................................................................................................... I ABSTRACT.................................................................................................................................................II ACKNOWLEDGEMENTS..................................................................................................................... III TABLE OF CONTENTS......................................................................................................................... IV LIST OF TABLES ......................................................................................................................................V LIST OF FIGURES.................................................................................................................................. VI CHAPTER 1 INTRODUCTION............................................................................................................1 1.1 MOTIVATIONS AND GOALS...............................................................................................................1 1.2 LITERATURE SURVEY .......................................................................................................................2 1.3 OUTLINE OF THIS THESIS ..................................................................................................................3 CHAPTER 2 THEORY ...........................................................................................................................4 2.1 DISCRETE SYSTEMS ..........................................................................................................................4 2.1.1 Equations of motion and loading conditions .........................................................................5 2.1.2 Constitutive relations...............................................................................................................6 2.1.3 State-space representation ......................................................................................................7 2.1.4 Linear viscoelastic damping and stability.............................................................................7 2.2 INDENTATION THEORY (CONTACT THEORY)....................................................................................8 2.3 CONTINUUM COSSERATS MECHANICS ..........................................................................................10 CHAPTER 3 COMPUTATION – COMSOL MULTIPHYSICS ..................................................14 3.1 GENERAL NUMERICAL CONSIDERATIONS IN COMSOL................................................................14 3.2 CONTACT MODELING IN COMSOL ...............................................................................................14 CHAPTER 4 RESULTS AND DISCUSSION...................................................................................17 4.1 A TWO-DIMENSIONAL DISCRETE MODEL .......................................................................................17 4.1.1 Effective stiffness and damping anomalies ..........................................................................17 4.1.2. Results of stability analysis..................................................................................................22 4.2 A CIRCULAR INCLUSION IN A SQUARE PLATE (PLANE ELASTICITY)..............................................25 4.3 DEAD LOAD ON SANDWICHED SUBSTRATE (2D BOUSSINESQ PROBLEM)....................................28 4.4 TWO-DIMENSIONAL CONTACT PROBLEM......................................................................................31 CHAPTER 5 CONCLUSIONS AND FUTURE WORKS................................................................35 5.1 CONCLUSIONS................................................................................................................................35 5.2 FUTURE WORKS ..............................................................................................................................35 APPENDIX A: CIRCULAR INCLUSION IN THE SQUARE PLATE............................................37 APPENDIX B: SANDWICHED SUBSTRATE.....................................................................................42 APPENDIX C: TWO-DIMENSIONAL CONTACT PROBLEM......................................................63 LIST OF REFERENCES ..........................................................................................................................67

    1 Lakes, R.S. (2001a). Extreme damping in compliant composites with a
    negative-stiffness phase. Philosophical Magazine Letters 81(2), 95-100.
    2 Lakes, R.S., Lee, T., Bersie, A., & Wang, Y.C. (2001). Extreme damping in
    composite materials with negative-stiffness inclusions. Nature 410(6828), 565-567.
    3 Lakes, R.S. (2001b). Extreme damping in composite materials with a negative
    stiffness phase. Physical Review Letters 86(13), 2897-2900.
    4 Lakes, R.S., & Drugan, W.J. (2002). Dramatically stiffer elastic composite
    materials due to a negative stiffness phase? Journal of the Mechanics and Physics of
    Solids 50(5), 979-1009.
    5 Wang, Y.C., & Lakes, R. (2004a). Negative stiffness-induced extreme
    viscoelastic mechanical properties: Stability and dynamics. Philosophical Magazine
    84(35), 3785-3801.
    6 Wang, Y.-C., Swadener, J.G., & Lakes, R.S. (2005). Anomalies in stiffness
    and damping of a 2D discrete viscoelastic system due to negative stiffness
    components. Thin Solid Films. Accepted.
    7 Wang, Y.C., & Lakes, R.S. (2004c). Stable extremely-high-damping discrete
    viscoelastic systems due to negative stiffness elements. Applied Physics Letters
    84(22), 4451-4453.
    8 Alberti, G., & DeSimone, A. (2005). Wetting of rough surfaces: a
    homogenization approach. Proceedings of the Royal Society of London, Series A
    (Mathematical, Physical and Engineering Sciences) 461(2053), 79-97.
    9 Lakes, R. (1987). Foam structures with a negative Poisson's ratio. Science
    235(4792), 1038-1040.
    10 Lakes, R. (1993). Advances in negative Poisson's ratio materials. Advanced
    Materials 5(4), 293-296.
    11 Knops, R.J., & Payne, L.E. (1971). Uniqueness Theorems in Linear Elasticity.
    Springer-Verlag, Berlin, Germany.
    12 Knops, R.J., & Wilkes, E.W. (1973). Theory of elastic stability. In Handbuck
    der physik, VIa/1-4, (Flugge, S., Ed.), pp. 125-302. Springer-Verlag.
    13 Wang, Y.C., & Lakes, R.S. (2005b). Composites with inclusions of negative
    bulk modulus: extreme damping and negative Poisson's ratio. Journal of Composite
    Materials 39(18), 1645-1657.
    14 Thompson, J.M.T. (1982). 'Paradoxial' mechanics under fluid flow. Nature
    296, 135-137.
    15 Ziegler, H. (1968). Principles of Structural Stability. Blaisdell Pub. Co,
    Waltham, Mass.
    16 Bulatovic, R. (1997). On the Lyapunov stability of linear conservative
    gyroscopic systems. C. R. Acad. Sci. Paris t. 324, Serie II b, 679-683.
    17 Wang, Y.C., & Lakes, R.S. (2004b). Extreme stiffness systems due to
    negative stiffness elements. American Journal of Physics 72(1), 40-50.
    18 Wang, Y.C., & Lakes, R. (2005a). Stability of negative stiffness viscoelastic
    systems. Quarterly of Applied Mathematics 63(1), 34-55.
    19 Garikipati, K. Couple stresses in crystalline solids: origins from plastic slip
    gradients, dislocation core distortions, and three-body interatomic potentials. Journal
    of the Mechanics and Physics of Solids (2003) vol. 51 (7) pp. 1189-1214
    68
    20 Wang, Y. C., Swadener, J. G. and Lakes, R. S. (2007). Anomalies in stiffness
    and damping of a 2D discrete viscoelastic system due to negative stiffness
    components. Thin Solid Films, vol. 515 (6) pp. 3171-3178
    21 Bathe, K.-J. (1982). Finite element procedures in engineering analysis.
    Prentice-Hall, Englewood Cliffs, N.J.
    22 Cook, R.D., Malkus, D.S., & Plesha, M.E. (1989). Concepts and applications
    of finite element analysis. Wiley, New York.
    23 Zener, C. (1948). Elasticity and anelasticity of metals. University of Chicago
    Press, Chicago.
    24 Landau, L. D. and Lifshitz, Theory of elasticity, Pergamon Books, 1986
    25 Bazant et al. Analogy between micropolar continuum and grid frameworks
    under initial stress, International Journal of Solids and Structures (1972) vol. 8 pp.
    327-346
    26 Berglund, K., 1982, “Structural models of micropolar media,” Mechanics of
    Micropolar Media, O., Brulin and R.K.T., Hsieh, eds., (Cism Lecture Notes) World
    Scientific, Singapore,
    pp. 35-86.
    27 Wang, Y. C., Influences of negative stiffness on a two-dimensional hexagonal
    lattice cell. Philosophical Magazine (2007) vol. 87 (24) pp. 3671-3688

    下載圖示 校內:2011-02-12公開
    校外:2019-02-12公開
    QR CODE