簡易檢索 / 詳目顯示

研究生: 連家祥
Lian, Jia-Siang
論文名稱: 氮化鎵摻雜錳作為轉化層於太陽能電池之研究
Study Of Mn-doped GaN as Up-conversion Layer in GaN-based Solar Cells
指導教授: 許進恭
Sheu, Jin-Kung
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 59
中文關鍵詞: 氮化鎵摻雜錳轉化層太陽能電池
外文關鍵詞: Mn-doped GaN, up-conversion, solar cells
相關次數: 點閱:61下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為對於氮化鎵材料摻雜錳之光電特性作為轉換層應用於太陽能電池當中。我們進行穿透光譜量測去探討轉換層所能吸收之入射光光子波段,由穿透頻譜之結果可以得知,氮化鎵材料摻雜錳將會在氮化鎵的禁止能帶中形成雜質能帶,而所形成之雜質能帶價電帶和導電帶之間能量之差距則可以吸收能量小於原本氮化鎵材料能隙大小之光子能量,如此一來此結構不僅可以吸收原本氮化鎵能隙大小之入射光光子能量,也可以吸收小於原本氮化鎵能隙大小之入射光光子能量,使價電帶之電子躍遷至雜質能帶與雜質能帶之電子躍遷至導電帶,經由此轉換過程,以期有額外光電流貢獻出。
    而將此結構應用的元件為:主動層為GaN/InGaN多重量子井之具
    Up-Convertion 機制之轉換層太陽能電池之結構,我們進行順向與逆
    向偏壓的電流-電壓量測和照光下太陽能電池元件之電流密度-電壓
    量測和外部量子效應之量測來探討是否有額外光電流之提升,進而提
    升轉換效率。實驗結果和分析將於本論文中詳加描述。

    In this study,we investigated in optical and electrical characteristic of
    Mn-doped GaN as a conversion layer for application in solar cells.First,we investigated conversion layer by transmittance spectrums absorbing incident light.According to the results of transmittance spectrums,Mn-doped GaN would form an impurity band,while the formation of the impurity band and the valence band to the conduction band energy gap between the absorbed energy can be smaller than the original size of the bandgap of GaN photon energy,so that this kind of structure could not only absorb the original GaN the size of the bandgap energy of the incident photons, but also could absorb the energy gap is smaller than the size of the original GaN photon energy of incident light,so the electrons on valence band transit to the impurity band and the electrons on the impurity band transit to the conduction band.By this process of conversion,hoping that the formation of photocurrent would occur.
    The application of this structure,active layer was GaN/InGaN multiple quantum wells with Up-convertion mechanisms conversion layer solar cell structure,we carried out the forward and reverse current - voltage measurements, under the simulation of solar the current density-voltage measurements and external quantum effects of the measurements to make sure that whether the extra photocurrent improving,further enhancing conversion efficiency.Results of experiments and analysis would discuss detailedly in my study.

    目錄 摘要I AbstractII 致謝III 目錄IV 表目錄VII 圖目錄VIII 第一章 序論1 1.1 前言1 1.2 氮化銦鎵太陽能電池介紹2 1.3 氮化鎵材料摻雜錳簡介3 1.4 研究目的與動機4 參考文獻9 第二章 理論背景11 2.1 太陽能電池原理11 2.2 太陽能電池接面設計12 2.2.1 p-n接面12 2.2.2 p-i-n接面13 2.2.3 氮化鎵摻雜錳原理14 2.3 太陽能電池等效電路14 2.3.1 等效電路15 2.4 太陽能電池之相關參數17 2.4.1 開路電壓 (Open-circuit Voltage , VOC)17 2.4.2 短路電流(Short Current, ISC)18 2.4.3 最大輸出電壓(VMax)、最大輸出電流(IMax)、最大輸出功率(PMax)18 2.4.4 填充因子 (Fill Factor , FF) 19 2.4.5 能量轉換效率 (Energy Conversion Efficiency , η)20 2.4.6 頻譜響應(Spectral Responsivity, SR)20 2.4.7 外部量子效率(External Quantum Efficiency, EQE)21 2.4.8 串聯電阻(Series Resistance,Rs)及並聯電阻(Shunt Resistance,Rsh)21 參考文獻29 第三章 太陽能電池元件結構與製程31 3.1 具有轉化層之太陽能電池之結構31 3.1.1 主動層為GaN/InGaN多重量子井之具轉換層太陽能電池結構31 3.2 具有轉化層太陽能電池之製程33 3.2.1 太陽能電池製程步驟33 3.3 量測儀器介紹38 第四章 量測結果與討論44 4.1 氮化鎵摻雜錳之特性分析44 4.1.1 穿透率量測44 4.2 主動層為GaN/InGaN多重量子井之具轉換層太陽能電池量測分析與討論45 4.2.1 轉換層原理46 4.2.2 太陽能電池特性量測分析 47 4.2.3 外部量子效率(EQE)量測分析50 參考文獻57 第五章 結論與未來展望58 5.1 總結58 5.2 未來工作59

    第一章
    [1] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Optical properties of the deep Mn acceptor in GaN:Mn”, Appl. Phys. Lett., vol.80, no.10, pp.1731, 2002.
    [2] E. Monroy, E.Muñoz, F. J. Sánchez, F. Calle, E. Calleja, B. Beaumout, P. Gibart, J. A. Muñoz, and F. Cussó, “High-performance GaN p–n junction photodetectors for solar ultraviolet applications” , Semicond. Sci. Technol, vol.13, no.9, pp.1042-1046, 1998.
    [3] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN”, Appl. Phys, vol.80, no.21, pp.3967-3969, 2002.
    [4] J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager Ⅲ, E.E. Haller, Hai Lu, and William J. Schaff, “Fermi-level stabilization in group Ⅲ nitrides”, Phys. Rev. B, vol.71, no.16, pp.1201, 2005.
    [5] H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, “(Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs”, Appl. Phys. Lett.,vol.69, no.3, pp.363, 1996.
    [6] T. Dietl, J. Konig, A.H. MacDonald, “Magnetic domains in III-V magnetic semiconductors ” , Phys. Rev. B, vol.64, no.24, pp.1201, 2001.
    [7] M. L. Reed, N. A. El-Masry, H. H. Stadelmaier, M. K. Ritums, and M. J. Reed, “Room temperature ferromagnetic properties of (Ga, Mn)N”, Appl. Phys. Lett., vol.79, no.21, pp.3473, 2001.
    [8] F. E. Arkun, M. J. Reed, E. A. Berkman, and N. A. El-Masry, “Dependence of ferromagnetic properties on carrier transfer at GaMnN/GaN:Mg interface”, Appl. Phys. Lett., vol.85, no.17, pp.3809, 2004.
    [9] A. Luque, and A. Marti, “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels”, Phys. Rev. Lett., vol.78, no.26, pp.5014-5017, 1997.
    [10] A. Luque, A. Marti, and C. Stanley, “Understanding intermediate-band solar cells”, Nature Photonics , vol.6, pp.146–152, 2012.
    [11] William Shockley, and Hans J. Queisser, “Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells”, J. Appl. Phys. vol.32, no.3, pp.510–519, 1961.
    [12] T. Trupke, A. Shalav, B.S. Richards, P. Wurfel, M.A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight”, Solar Energy Materials & Solar Cells, vol.90, pp.3327–3338, 2006.

    第二章
    [1] Donald A. Neamen, Semiconductor Physics & Devices, 3rd ed, Mc Graw Hill, 2003.
    [2] N. Theodoropoulou, A. F. Hebard, M. E. Overberg, C. R. Abernathy, S. J. Pearton, S. N. G. Chu, and R. G. Wilson, “Magnetic and structural properties of Mn-implanted GaN”, Appl. Phys. Lett., vol.78, no.22, pp.3475-3477, 2001.
    [3] P. Boguslawski and J. Bernholc, “Fermi-level effects on the electronic structure and magnetic couplings in (Ga,Mn)N”, Phys. Rev. B, vol.72, no.11, pp.5208-5212, 2005.
    [4] N. Nepal, Amr M. Mahros, S. M. Bedair, N. A. El-Masry, and J. M. Zavada, “Correlation between photoluminescence and magnetic properties of GaMnN films”, Appl. Phys. Lett., vol.91, no.24, pp.2502-2504, 2007.
    [5] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Optical properties of the deep Mn acceptor in GaN:Mn”, Appl. Phys. Lett., vol.80, no.10, pp.1731, 2002.
    [6] T. Graf, M. Gjukic, M. S. Brandt, M. Stutzmann, and O. Ambacher, “ The Mn3+/2+ acceptor level in group III nitrides”, Appl. Phys. Lett., vol.81, no.27, pp.5159-5161, 2002.
    [7] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Mn-related absorption and PL bands in GaN grown by metal organic vapor phase epitaxy”, Physica B, vol.308, pp.30-33, 2001.
    [8] F. E. Arkun, A. M. Mahros, N. A. El-Masry, J. Muth, X. Zhang, J. M. Zavada, and S. M. Bedair, “Materials Research Society Symposia Proceedings”, vol.955, 2006.
    [9] 李佳輝, “氮化鎵摻雜錳應用於中間能帶太陽能電池之研究”, 國立成功大學光電科學與工程研究所, 碩士論文, 2011.
    [10] 郭翔維, “氮化鎵摻雜錳應用於蕭基光偵測器及太陽能電池之研究”, 國立成功大學光電科學與工程研究所, 碩士論文, 2010.
    [11]Wang, W., Lin, A. S. and Phillips, J. D. , “Intermediate-band photovoltaic solar cell based on ZnTe:O”, Appl. Phys. Lett., vol.95, no.1, pp.1103-1105, 2009.

    第四章
    [1] T. Trupke, A. Shalav, B.S. Richards, P. Wurfel, M.A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight”, Solar Energy Materials & Solar Cells, vol.90, pp.3327–3338, 2006.

    下載圖示 校內:2016-08-15公開
    校外:2016-08-15公開
    QR CODE