| 研究生: |
王博弘 Wang, Po-Hung |
|---|---|
| 論文名稱: |
利用網版印刷技術製備免切割高功率垂直結構氮化鎵系列發光二極體 A Screen Printed Tin-Based Dicing-Free Metal Substrate Technology for the Fabrication of Vertical-Structure GaN-Based Light-Emitting Diodes |
| 指導教授: |
王水進
Wang, Shui-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 網版印刷技術 、免切割 、發光二極體 |
| 外文關鍵詞: | dicing free, light-emitting diodes, screen printed |
| 相關次數: | 點閱:61 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,由於垂直結構金屬基板之氮化鎵系列發光二極體可以有效解決或減輕絕緣的藍寶石基板因散熱不佳、僅以橫向傳導所帶來電流叢聚效應(Current crowding effect)以及兩電極在同一面造成較小發光面積等問題,已引起廣泛的注意及研究。其中,金屬基板工程扮演一重要的議題,它不只在雷射剝離製程時提供氮化鎵薄膜支撐以保留磊晶的 完整性,同時實現電流垂直及較短導通路徑。
本論文提出一種製程簡易迅速、適合推廣到業界之金屬膏料網印技術,可提供開發新型的導電及導熱性俱佳之金屬基板。此一技術於整合區塊雷射剝離技術後,使磊晶基板與金屬基板易於對準及切割道之自動形成,可以解決後段製程之晶粒切割問題,有效降低製程的複雜度。
本研究亦使用乾蝕刻(Dry-etching)-電感耦合電漿(ICP)與化學蝕刻(Chemical etching)-氫氧化鉀(KOH)溶液進行n-GaN表面處理,以提升元件出光效益。由實驗結果顯示,以40 mil元件來比較,在350 mA工作電流之下,網印金屬基板垂直結構LED的Vf值較橫向傳統結構LED降低1.62 V。光輸出功率(ΔLOP/LOP)比傳統元件高出226.64%。光電轉換效率增加339%,
In recent years, tremendous efforts have been devoted to develop vertical thin-GaN LEDs (V-LEDs). For the fabrication of vertical thin GaN LED, substrate engineering technology play a vital role, It not only serves as a mechanical support for brittle epi-GaN after sapphire removal with laser lift-off, but also enables a vertical and shorter conduction path compared to regular lateral LEDs.
In this study, commercial available Tin-based solder paste were used to form a Tin-based dicing-free metal substrate for the fabrication of V-LEDs. Combined with patterned laser lift-off (LLO) technique, a metal substrate technology was proposed for the fabrication of V-LEDs. Advantages including reserving the merits of metallic substrate and reducing the processing time for the fabrication of vertical-structured GaN-based LEDs were demonstrated. As compared to regular lateral LEDs, the fabricated 40 mil VM-LEDs show an increase in light output power (ΔLOP/LOP)about 226.64 % at 350 mA . A significant decrease in forward voltage about 1.62 V at 350 mA and an improvement in power efficiency about 339 % at 350 mA.
1.Nick Holonyak, Jr. and S. F. Bevacqua, “COHERENT (VISIBLE) LIGHT EMISSION FROM Ga(As1–xPx) JUNCTIONS”, Appl. Phys. Lett., vol. 1, no. 82, Dec. 1962.
2.李季達,”北京奧運引發LED照明商機”,光連雙月刊,38期,2002。
3.Electronic Materials, Education Network in Taiwan, Chinese Society for Materials Science (CSMS), 2001S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett., vol. 64, p. 1687-1689, 1994
4.J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, etc., Appl. Phys. Lett., vol 78, no. 22, p. 3379-3381, 2001.
5.T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett., vol. 84, p. 855-857, 2004.
6.R. F. Reyna, A. Marti, C. Algora, J. C. Maroto, and G. L. Araujo, IEEE Trans. Electron Devices, vol. 44, p. 1174-1176, 1997.
7.Hyunsoo Kim, Seong-Ju Park, and Hyunsang Hwang, IEEE Transactions on Electron Devices, vol. 48, no. 6, p. 1065-1069, 2001.
8.M. Hansen, P. Kozodoy, S. Keller, U. Mishra, J. Speck, and S. Denbaars, Proc. 2nd Int. Symp. Blue Laser and Light Emitting Diodes, Chiba, Japan, p. 540-543, 1998.
9.X. Guo, Y.-L. Li, and E. F. Schubert, Appl. Phys. Lett., vol 79, no. 13, p. 1936-1938, 2001.
10.X. Guo, and E. F. Schubert, Appl. Phys. Lett., vol 78, p. 3337, 2000.
11.M. R. Krames, G. Christenson, D. Collins, L. W. Cook, and M.G. Craford, in SPIE Conf. Light Emitting Diodes: Research, Manufacturing, and Applications-Part IV, vol. 3938, p. 2-12, 2000.
12.A. Motayed, R. Bathe,M. C. Wood,Ousmane S. Diouf,R. D. Vispute, andS. N. Mohammad, J. Appl. Phys., vol 93, p. 1087-1094, 2003.
13.W. C. Peng and YewChung Sermon Wu, Appl. Phys. Lett., vol. 84, p. 1841, 2004.
14.X. A. Cao and S. D. Arthur, Appl. Phys. Lett., vol. 85, no. 18, p. 3971, 2004.
15.]H. X. Jiang, S. X. Jin, J. Li, J. Shakya, and J. Y. Lin, Appl. Phys. Lett., vol. 78, p. 1303, 2001.
16.H. W. Choi, C. W. Jeon, M. D. Dawson, and P. R. Edwards, et al., IEEE Photo. Tech. Lett., vol. 15, no. 4, p. 510, 2003.
17.H. W. Choi, C. W. Jeon, M. D. Dawson, Journal of Crystal Growth, vol. 268, p. 527, 2004.
18.V. Adivarahan, S. Wu, W. H. Sun, V. Mandavilli, and M. S. Shatalov, et al., Appl. Phys. Lett., vol. 85,p. 1838, 2004.
19.S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, and T. Matsushita, et al., Appl. Phys. Lett., vol. 72, p. 211, 1998.
20.J. Han, M. H. Crawford, R. J. Shul, and J. J. Figiel, et al., Appl. Phys. Lett., vol. 73, p. 1688, 1998.
21.R. Gaska, Q. Chen, J. Yang., and A. Osinsky, et al., IEEE Electron Device Lett., vol. 18, p. 492, 1997.
22.T. Egawa, T. Jimbo, and M. Umeno, J. Appl. Phys., vol 82, p. 5816, 1997
23.S. Guha and N. A. Bojarczuk, Appl. Phys. Lett. 73, p. 1487, 1998
24.T. Mukai, K. Takekawa, and S. Nakamura, Jpn. J. Appl. Phys., Part 2 37, L839, 1998.
25.R. Gaska, J. W. Yang, and A. Osinsky, et al., Appl. Phys. Lett., vol. 71, p. 3637-3639, 1997
26.S. J. Cai, R. Li, and Y. L. Chen, et al., Electron. Lett. 34, p. 2354, 1998.
27.I. Eliashevich, Y. Li, A. Osinsky, C. A. Tran, M. G. Brown, and R. F. Karlicek Jr., SPIE Conf. Light-Emitting Diodes: Research, Manufacturing, and Applications-Part III, vol. 3621, p. 28-36, 1999.
28.T.Lei and T. D. Moustakas, J. appl. Phys., vol. 71, p.4933-4943, 1992.
29.T. Lei, M. Fanciulli, R. J. Molnar, and T. D. Moustakas, Appl. Phys. Lett., vol. 59, p. 944-945, 1991.
30.R. Javorka, A. Alam, N. Nastase, M. Marso, H. Hardtdegen, M. Heuken, H. Luth, and P. Kordes, Electronics Letters, vol. 37, p.1364-1366, 2001.
31.V. Hoel, Y. Guhel, B. Boudart, C. Gaquiere, J. C. De Jaeger, H. Lahreche, and P. Gibart, Electronics Letters, vol. 37, p.1095-1096, 2001.
32.R. Javorka, A. Alam, M. Wolter, A. Fox, M. Marso, M. Heuken, H. Luth, and P. Kordes, IEEE Elec. Device Letters, vol. 23, p. 4-6, 2002.
33.M. E. Sherwin, J. Appl. Phys., vol.69, p. 8423-8425, 1991.
34.M. J. Uren, T. Martin, J. C. Birbeck, R. Balmer, B. T. Hughes, J. J. Guest, and A. J. Hydes, 8th IEEE International Symposium on High Performance Electron Devices for Microwave and Optoelectronic Applications, p. 71-75, 2000.
35.J. W. Graff, E. F. Schubert, and A. Osinsky, Electronics. Letters, vol. 37, p. 249-250, 2001.
36.Shui-Jinn Wang, Kai-Ming Uang, Shiue-Lung Chen, Yu-Cheng Yang, Shu-Cheng Chang, Tron-Min Chen, Chao-Hsuing Chen, and Bor-Wen Liou,” Use of Patterned Laser Lift-off and Electroplating Nickel Layer for the Fabrication of Vertical-structure GaN-based Light-emitting Diodes,” Applied Physics Letters vol. 87, p. 011111-1 - 011111-3, July 2005.
37.J. K. Sheu, C. M. Tsai, M. L. Lee, S. C. Shei, and W. C. Lai, "InGaN light-emitting diodes with naturally formed truncated micropyramids on top surface", Appl. Phys. Letts., 88, p. 113505-113507, 2006.
38.E. H. Park, I. T. Ferguson, S. K. Jeon, J. S. Park, T. K. Yoo, "InGaN-light emitting diode with high density truncated hexagonal pyramid shaped p-GaN hillocks on the emission surface", Appl. Phys. Letts, 89, p. 251106-251108, 2006.
39.N. C. Lee,「1998先進電子封裝技術趨勢研討會」講義,新竹,p. 81,1998。(表3-1)
40.M. Shimbo, K. Furukawa, K. Fukuda, and K. Tanzawa, “Silicon-to-silicon direct bonding method”, J. Appl. Phys., vol. 60, p. 2987, 1986
41.J. B. Lasky, “Wafer bonding for silicon-on-insulator technologies”, Appl. Phys. Lett., vol. 48, p. 78, 1986.
42.M. K. Kelly, R. P. Vaudo, V. M. Phanse, L. Gorgens, O. Ambacher, and M. Stutzmann, “Large Free-Standing GaN Substrates by Hydride Vapor Phase Epitaxy and Laser-Induced Litoff,” Jpn. J. Appl. Phys. vol. 38, p. L217, 1999.
43.W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L.T. Romano, and N. M. Johnson, “Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off,” Appl. Phys. Lett., vol. 75, p. 1360, 1999.
44.N. G. Basov, V. A. Danilychev, Y. M. Popov, and D. D. Khodkevich, “Laser operating in the vacuum region of the spectrum by excitation of liquid xenon with an electron beam”, J. of Experimental and Theoretical Physic Letters, Vol. 12, p.329, 1970.
45.S. Searles, G. Hart, “Stimulated emission at 281.8 nm from XeBr”, Appl. Phy. Letts, Vol. 27, p.243, 1975
46.李永春,”準分子雷射細微加工機一般使用者訓練教材”,國立成功大學機械工程系,2004。
47.S. J. Wang, “Building Better LEDs from the Bottom up”, Photonics Spectra, p.109, Sep. 2005.
48.T. H. Chung,” Challenges for the application of Lead-free solders ON Ball Grid Array packages,” Bulletin of the College of Engineering, N.T.U., No. 89, October, p. 101–110, 2003.
49.B. I. Noh,” Effects of number of reflows on the mechanical andelectrical properties of BGA package,” Elsevier, no. 14, May 5, p. 1375-1378, 2006.
50.J. w. Yoon,” Effects of reflow and cooling conditions on nterfacial reactionand IMC morphology of Sn–Cu/Ni solder join,” Journal of Alloys and Compounds, no. 415, Sep 19, p. 56-61, 2006.
51.J. W. Yoon,” High temperature reliability and interfacial reaction of eutecticSn–0.7Cu/Ni solder joints during isothermal aging,” Elsevier, no. 46, July 1, p. 905-914, 2006.
52.S. K. Kang,” Interfacial Reaction Studies on Lead (Pb)-Free Solder Alloys,” IEEE, no.3, July, p.155-161, 2002.
53.L. C. Shiau,” Reactions between Sn–Ag–Cu lead-free solders and the Au/Ni surface finish in advanced electronic packages,” Soldering and Surface Mount Technology, no.14, p. 25-29, 2002.
54.W. S. Wong, J. Krüger, Y. Cho, B. P. Linder, E. R. Weber, N. W. Cheung, and T. Sands, “Selective UV-laser processing for lift-off of GaN thin films from sapphire substrates,” in Proc. Symp. on Light Emitting Devices for Optoelectronic Applications and State-of-the-Art Program on Compound Semiconductors XXVIII, Vol. 98-2, p. 377-384, 1998.
55.H. W. Choi, S. J. Chua, X. Xu, and Y. Sun, “Electrical Properties of ICP Plasma-Damaged n-GaN,” published by IPAP Conference Series 1, Tokyo, p. 786-789, 2000.
56.S. Tripathy, S. J. Chua, and A. Ramam, “Electronic and vibronic properties of n-type GaN: the influence of etching and annealing,” Journal of Physics: Condensed Matter, no. 17, May 6, p. 4461-4476, 2002.
57.Y. Gao, T. Fujii, R. Sharma, K. Fujito, S. P. Denbaars, S. Nakamura, and E. L. Hu, “Roughening Hexagonal Surface Morphology on Laser Lift-Off (LLO) N-Face GaN with Simple Photo-Enhanced Chemical Wet Etching,” Japanese Journal of Applied Physics, vol. 43, no. 5A, p. L637-L639, 2004.
58.H. W. Choi, S. J. Chua, X. Xu, and Y. Sun, “Electrical Properties of ICP Plasma-Damaged n-GaN,” published by IPAP Conference Series 1, Tokyo, p. 786-789, 2000.
59.Y. J. Lin and C. T. Lee, “Investigation of surface treatments for nonalloyed ohmic contact formation in Ti/Al contacts to n-type GaN,” Applied Physics Letters, no. 24, Dec 11, p. 3986-3988, 2000.
60.S. L. Chen, S. J. Wang, “High-Power GaN-Based Light-Emitting Diodes With Selective Nickel Electroplating and Patterned Laser Liftoff Techniques,” IEEE Photonics Technology Letters, no. 6, March 5, p. 351-353, 2007
61李嘉元,”新型高亮度、熱穩定之晶體內部全方位反射層磷化鋁銦鎵發光二極體研製”,國立成功大學微電子工程研究所碩士論文,2006。