簡易檢索 / 詳目顯示

研究生: 黃田盛
Huang, Tien-Sheng
論文名稱: 氯離子濃度及溫度對2101雙相不銹鋼孔蝕性質的影響研究
Effects of chloride concentration and solution temperature on pitting corrosion behavior of 2101 duplex stainless steel
指導教授: 蔡文達
Tsai, Wen-Ta
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 123
中文關鍵詞: 雙相不銹鋼孔蝕敏感性臨界氯離子濃度臨界孔蝕溫度
外文關鍵詞: duplex stainless steel, pitting corrosion susceptibility, critical chloride concentration, critical pitting temperature
相關次數: 點閱:185下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討氯離子濃度及溫度對2101雙相不銹鋼孔蝕性質的影響。實驗材料使用2101雙相不銹鋼,並在1100 °C下進行固溶均質化熱處理,而後藉由循環極化試驗評估2101雙相不銹鋼之孔蝕敏感性隨環境條件不同的變化。並且透過定電位鈍化處理去釐清不同溫度下,鈍化膜之化學組成的差異,進一步說明其對於孔蝕抵抗性的影響。此外以2205雙相不銹鋼作為實驗對照組,藉此探討合金含量在孔蝕性質中所扮演的角色。
    電化學實驗結果顯示,在所有環境條件下,2205雙相不銹鋼之抗蝕性質皆優於2101雙相不銹鋼。在不同氯離子濃度之NaCl水溶液中,2101雙相不銹鋼之孔蝕性質以在21300 ppm氯離子濃度中受溫度變化的影響最為顯著,當 10 °C升溫至25 °C時,表面開始有孔蝕生成;而2205雙相不銹鋼之孔蝕性質同樣以在21300 ppm氯離子濃度中受溫度變化的影響最為顯著,但卻於50 °C下才開始發生孔蝕。另一方面在不同溫度下,2101雙相不銹鋼之Enp值在25 °C下受氯離子濃度變化的影響最為顯著,而2205雙相不銹鋼之Enp值則是在50 °C下受氯離子濃度變化的影響最為顯著,且兩者之Enp驟降的氯離子濃度區間皆為250 ppm至2500 ppm。此外孔蝕皆優先發生於2101及2205雙相不銹鋼中的α相,並隨著溫度上升,孔蝕將由點狀轉為蕾絲狀的腐蝕形貌,而當表面蕾絲覆蓋層進一步受到溶解後,最終則會留下碗狀的蝕孔。
    XPS分析結果顯示,兩種雙相不銹鋼之O1s複合峰中氧化層的含量比例皆隨溫度上升而增加,其中氧化層含量比例的增加是由2101雙相不銹鋼中的Fe2O3所貢獻,而2205雙相不銹鋼則是Cr2O3。此外兩種雙相不銹鋼之N1s的化學態主要以NH3存在,且其含量比例以2101雙相不銹鋼較高,而這可能與2101雙相不銹鋼具有較高的N含量有關。藉此可以進一步證實Mo與N之間的協同作用,主要由於2101雙相不銹鋼具有的Mo含量較低,因此無法藉由增加N含量來提升抗孔蝕性質,而有較高的孔蝕敏感性。

    The corrosion behavior of 2101 duplex stainless steel (DSS) in NaCl solution was studied and compared with that of 2205 DSS. The effects of chloride concentration and solution temperature on pitting corrosion behavior were focused. The relative sensitivity to pitting corrosion of the constituent phases in both 2101 and 2205 DSSs was also explored. Pitting corrosion susceptibility was evaluated by conducting cyclic polarization curve measurement. The corrosion morphology was examined by a scanning electron microscope (SEM), while the corrosion product and the passive film were analyzed by using energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The experimental results showed that the pitting corrosion resistance of 2101 DSS was inferior to that of 2205 DSS by exhibiting a lower threshold chloride concentration and a lower critical pitting temperature. For both 2101 and 2205 DSSs, the ferrite phase was more susceptible than austenite phase to pitting corrosion.

    摘要 I Extended Abstract III 誌謝 XIV 總目錄 XVI 表目錄 XIX 圖目錄 XXI 第一章、前言 1 第二章、文獻回顧及背景資料 4 2.1 雙相不銹鋼之簡介 4 2.2 孔蝕理論 6 2.2.1孔蝕簡介 6 2.2.2鈍化膜成形機制 7 2.2.3鈍化膜崩解機構 8 2.2.4 孔蝕敏感位置 9 2.2.5 介穩態蝕孔 10 2.2.6 孔蝕成長 10 2.2.7 孔蝕研究方法 11 2.3 雙相不銹鋼之孔蝕性質 12 2.3.1 合金元素的影響 12 2.3.2 環境因子的影響 16 2.4 雙相不銹鋼之鈍化膜性質 19 第三章、研究方法及步驟 35 3.1實驗材料 35 3.2 金相組織觀察 36 3.3 兩相之含量鑑定及成分分析 37 3.4 電化學性質分析 37 3.4.1 電化學測試環境 37 3.4.2 循環極化曲線量測 38 3.4.3 定電位測試 39 3.4.4 鈍化膜組成分析 40 第四章、結果與討論 44 4.1 不同合金含量對雙相不銹鋼顯微結構之影響 44 4.1.1 兩相的體積比例含量 44 4.1.2 兩相的化學組成 46 4.2 雙相不銹鋼在含氯離子水溶液中之電化學性質分析 48 4.2.1 溫度對2101及2205雙相不銹鋼孔蝕性質影響 48 4.2.2 孔蝕成核位置及成長形態 51 4.2.3 氯離子濃度對2101及2205雙相不銹鋼孔蝕性質影響 54 4.2.4 合金成分含量對雙相不銹鋼孔蝕性質的影響 57 4.3 合金成分對雙相不銹鋼之鈍化膜化學組成的影響 60 第五章、結論 115 參考文獻 117

    [1] J. Olsson and M. Snis, "Duplex - A new generation of stainless steels for desalination plants," Desalination, vol. 205, pp. 104-113, 2007.
    [2] W. Zhang, L. Z. Jiang, J. C. Hu, and H. M. Song, "Study of mechanical and corrosion properties of a Fe-21.4Cr-6Mn-1.5Ni-0.24N-0.6Mo duplex stainless steel," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 497, pp. 501-504, 2008.
    [3] C. C. Su, Z. S. Smialowska and J. H. Wang, "Effects of Cl- concentration and temperature on pitting of AISI 304 stainless steel," Corrosion Science, vol. 44, pp. 732-737, 1988.
    [4] P. R. Levey and A. Vanbennekom, "A mechanistic study of the effects of nitrogen on the corrosion properties of stainless-steels," Corrosion, vol. 51, pp. 911-921, 1995.
    [5] L. H. Zhang, Y. M. Jiang, B. Deng, W. Zhang, J. L. Xu, and J. Li, "Effect of aging on the corrosion resistance of 2101 lean duplex stainless steel," Materials Characterization, vol. 60, pp. 1522-1528, 2009.
    [6] F. Zanotto, V. Grassi, A. Balbo, C. Monticelli, and F. Zucchi, "Stress corrosion cracking of LDX 2101 (R) duplex stainless steel in chloride solutions in the presence of thiosulphate," Corrosion Science, vol. 80, pp. 205-212, 2014.
    [7] A. Bhattacharya and P. M. Singh, "Electrochemical behaviour of duplex stainless steels in caustic environment," Corrosion Science, vol. 53, pp. 71-81, 2011.
    [8] L. H. Zhang, W. Zhang, Y. M. Jiang, B. Deng, D. M. Sun, and J. Li, "Influence of annealing treatment on the corrosion resistance of lean duplex stainless steel 2101," Electrochimica Acta, vol. 54, pp. 5387-5392, 2009.
    [9] J. L. Xu, T. Sun, L. H. Zhang, J. Li, and Y. M. Jiang, "Potentiostatic electrochemical noise analysis of 2101 lean duplex stainless steel in 1 mol/L NaCl," Journal of Materials Science & Technology, vol. 28, pp. 474-480, 2012.
    [10] R. Merello, F. J. Botana, J. Botella, M. V. Matres, and M. Marcos, "Influence of chemical composition on the pitting corrosion resistance of non-standard low-Ni high-Mn-N duplex stainless steels," Corrosion Science, vol. 45, pp. 909-921, 2003.
    [11] J. Oudar and P. Marcus, "Corrosion mechanisms in theory and practice," New York : M. Dekker, p. 239, 1995.
    [12] G. S. Frankel, "Pitting corrosion of metals a review of the critical factors," Journal of the Electrochemical Society, vol. 145, pp. 2186-2198, 1998.
    [13] S. L. Chawla and R. K. Gupta, "Materials selection for corrosion control," ASM International, p. 523, 1993.
    [14] H. H. Strehblow, "Nucleation and repassivation of corrosion pits for pitting on iron and nickel," Werkst. Korros., vol. 27, pp. 792-799, 1976.
    [15] H. H. Strehblow, "In corrosion mechanisms in theory and practice," New York : M. Dekker, p. 201, 1995.
    [16] D. C. Mears and G. P. Rothwell and T. P. Hoar, "The relationships between anodic passivity, brightening and pitting*," Corrosion Science, vol. 5, pp. 279-289, 1965.
    [17] J. M. Herbelin and P. Marcus, "The entry of chloride ions into passive films on nickel studied by spectroscopic (ESCA) and nuclear (36Cl radiotracer) methods," Corrosion Science, vol. 34, pp. 1123-1145, 1993.
    [18] H. H. Uhlig, "Adsorbed and reaction-production films on metals," Journal of the Electrochemical Society, vol. 97, pp. 215-220, 1950.
    [19] K. J. Vetter and H. H. Strehblow, "Formation and shape of corrosion pits in localized corrosion on iron theoretical results pertaining to localized corrosion," Berichte Der Bunsen-Gesellschaft Fur Physikalische Chemie, vol. 74, pp. 1024-&, 1970.
    [20] N. Sato, "Theory for breakdown of anodic oxide films on metals," Electrochimica Acta, vol. 16, pp. 1683-&, 1971.
    [21] R. G. Kelly, "In proceedings of corrosion/97 ,Research Topical Symposia," Houston : NACE, p. 81, 1997.
    [22] N. Sato, K. Kudo, and T. Noda, "Anodic oxide film on iron in neutral solution," Electrochimica Acta, vol. 16, pp. 1909-&, 1971.
    [23] A. Thrnbull, "In advances in localized corrosion," Houston : NACE, p. 359, 1990.
    [24] A. J. Sedriks, "New stainless steels for seawater service," Corrosion vol. 45, pp. 510-518, 1989.
    [25] K. Lorenz and G. Medawar, "About the corrosion behavior of Cr-Ni-Mo austenitic steels with and without nitrogen addition taking their resistance in chloride solutions," Thyssen Research, vol 1, pp. 97-108, 1969
    [26] G. Herbsleb, "The influence of SO2, H2S and CO on pitting corrosion of austenitic chromium-nickel stainless steels with up to 4wt-precent molybdenum in 1 M NaCl," Werkst. Korros., vol. 33, pp. 334-340, 1982.
    [27] G. Rondelli, B. Vicentini, and A. Cigada, "Influence of nitrogen and manganese on localized corrosion behavior of stainless-steels in chloride environments," Werkst. Korros., vol. 46, pp. 628-632, 1995.
    [28] Z. Y. Zhang, D. Han, Y. M. Jiang, C. Shi, and J. Li, "Microstructural evolution and pitting resistance of annealed lean duplex stainless steel UNS S32304," Nuclear Engineering and Design, vol. 243, pp. 56-62, 2012.
    [29] M. Gastaldi and L. Bertolini, "Effect of temperature on the corrosion behaviour of low-nickel duplex stainless steel bars in concrete," Cement and Concrete Research, vol. 56, pp. 52-60, 2014.
    [30] K. Park and H. Kwon, "Effects of Mn on the localized corrosion behavior of Fe-18Cr alloys," Electrochimica Acta, vol. 55, pp. 3421-3427, 2010.
    [31] D. W. Jiang, C. S. Ge, X. J. Zhao, J. Li, L. L. Shi, and X. S. Xiao, "22Cr High-Mn-N Low-Ni economical duplex stainless steels," Journal of Iron and Steel Research International, vol. 19, pp. 50-56, 2012.
    [32] H. Y. Ha, M. H. Jang, T. H. Lee, and J. Moon, "Interpretation of the relation between ferrite fraction and pitting corrosion resistance of commercial 2205 duplex stainless steel," Corrosion Science, vol. 89, pp. 154-162, 2014.
    [33] L. F. GarfiasMesias, J. M. Sykes, and C. D. S. Tuck, "The effect of phase compositions on the pitting corrosion of 25 Cr duplex stainless steel in chloride solutions," Corrosion Science, vol. 38, pp. 1319-1330, 1996.
    [34] L. F. Garfias-Mesias and J. M. Sykes, "Effect of copper on active dissolution and pitting corrosion of 25% Cr duplex stainless steels," Corrosion, vol. 54, pp. 40-47, 1998.
    [35] Y. C. Lu and M. B. Ives, "Inhibition of transpassive reactions of molybdenum by nitriding, " Corrosion Science, vol. 33, pp. 317-320, 1992.
    [36] M. G. Fontana, "Corrosion engineering," New York : McGraw-Hill, p. 67, 1986.
    [37] B. Deng, Z. Y. Wang, Y. M. Jiang, H. Wang, J. Gao, and J. Li, "Evaluation of localized corrosion in duplex stainless steel aged at 850 degrees C with critical pitting temperature measurement," Electrochimica Acta, vol. 54, pp. 2790-2794, 2009.
    [38] B. Deng, Y. M. Jiang, J. Gong, C. Zhong, J. Gao, and J. Li, "Critical pitting and repassivation temperatures for duplex stainless steel in chloride solutions," Electrochimica Acta, vol. 53, pp. 5220-5225, 2008.
    [39] C. F. Dong, H. Luo, K. Xiao, T. Sun, Q. Liu, and X. G. Li, "Effect of temperature and Cl- concentration on pitting of 2205 duplex stainless steel," Journal of Wuhan University of Technology-Materials Science Edition, vol. 26, pp. 641-647, 2011.
    [40] E. C. Souza, S. M. Rossitti, and J. Rollo, "Influence of chloride ion concentration and temperature on the electrochemical properties of passive films formed on a superduplex stainless steel," Materials Characterization, vol. 61, pp. 240-244, 2010.
    [41] H. P. Leckie and H. H. Uhlig, "Environmental factors affecting the critical potential for pitting in 18-8 stainless steel," Journal of the Electrochemical Society, vol. 113, pp. 1262-1267, 1966.
    [42] H. H. Uhlig and J. R. Gilman, "Pitting of 18-8 stainless steel in ferric chloride inhibited by nitrates," Corrosion, vol. 20, pp. 289-292, 1964.
    [43] M. H. Moayed and R. C. Newman, "Evolution of current transients and morphology of metastable and stable pitting on stainless steel near the critical pitting temperature," Corrosion Science, vol. 48, pp. 1004-1018, 2006.
    [44] 涂成一, "雙相不銹鋼之局部腐蝕性質研究," 碩士論文, 1994.
    [45] 曾傳銘, "雙相不銹鋼之應力腐蝕破裂及腐蝕疲勞裂縫生長行為研究," 博士論文, 2004.
    [46] W. Fredriksson, "Depth profiling of the passive layer on stainless steel using photoelectron spectroscopy," Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 95, ISBN 978-91-554-8430-9, 2012.
    [47] C. O. A. Olsson, "The influence of nitrogen and molybdenum on passive films formed on the austenoferritic stainless-steel-2205 studied by AES and XPS," Corrosion Science, vol. 37, pp. 467-479, 1995.
    [48] W. Fredriksson, D. Petrini, K. Edstrom, F. Bjorefors, and L. Nyholm, "Corrosion resistances and passivation of powder metallurgical and conventionally cast 316L and 2205 stainless steels," Corrosion Science, vol. 67, pp. 268-280, 2013.
    [49] J. C. Lippold and W. F. Savage, "Solidification of austenitic stainless steel weldments : Part I - A proposed mechanism, " Welding Journal, vol. 58, pp. 362-374, 1979.
    [50] D. J. Kotecki and T. A. Siewert, "WRC-1992 constitution diagram for stainless-steel weld metals - a modification of the WRC-1988 diagram," Welding Journal, vol. 71, pp. 171-178, 1992.
    [51] M. A. V. Bermejo, "Predictive and measurement methods for delta ferrite determination in stainless steels," Welding Journal, vol. 91, pp. 113-121, 2012.
    [52] A. L. Schaeffler, "Constitution diagram for stainless steel weld metal," Metal Progress, vol. 56, pp. 680-688, 1949.
    [53] W. T. Delong, "Ferrite in austenitic stainless steel weld metal," Welding Journal, vol. 53, pp. 273-286, 1974.
    [54] W. M. Small and R. D. Pehlke, "The effect of alloying elements on the solubility of nitrogen in liquid iron-chromium-nickel alloys," Trans AIME, vol. 242, pp. 2501-2505, 1968.
    [55] M. Liljas and R. Qvarfort, "Influence of nitrogen on weldments in UNS S31803," Duplex Stainless Steels '86, vol. 2, pp. 244-256, 1986.
    [56] C. O. A. Olsson and D. Landolt, "Passive films on stainless steels - chemistry, structure and growth," Electrochimica Acta, vol. 48, pp. 1093-1104, 2003.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE