簡易檢索 / 詳目顯示

研究生: 張亞倫
Chang, Yea-Luen
論文名稱: Sn-Bi及Sn-Zn系無鉛銲錫振動破壞之Bi含量效應探討
A Study of Bi Contents on the Vibration Fracture Characteristics of Sn-Bi and Sn-Zn Lead-Free Solder Alloys
指導教授: 陳立輝
Chen, Li-Hui
呂傳盛
Lui, Truan-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 97
中文關鍵詞: 振動破壞無鉛銲錫
外文關鍵詞: Sn-Zn-Bi, vibration, Sn-Zn, solder, Sn-Bi
相關次數: 點閱:96下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   銲錫材料於使用上可能因遭遇機械振動而產生損害,如何提高銲錫材料於制振能力及振動壽命值得探討。本研究針對二元Sn-xBi (x=10, 30, 58wt%,分別以10Bi、30Bi及58Bi表示)、Sn-xZn (x=7, 9, 11, 13wt%,分別以S7Z、S9Z、S11Z、S13Z表示)以及三元Sn-8Zn-xBi (x=3, 6wt%,分別以S83、S86表示)及Sn-xZn-3Bi (x=5, 8, 11wt%,分別以S53、S83、S113)等四組銲錫合金於共振狀態下進行振動測試,以理解組成及組織特徵對Sn-Zn-Bi系統共振破壞性質的影響。
      根據實驗結果,Sn-xBi合金中,共晶組成58Bi試片具最佳制振性及等出力值條件下共振壽命;而在相近起始偏移量測試之共振壽命,則以30Bi最佳、10Bi次之,58Bi最差,此二現象均與該58Bi試片具連續Sn/Bi介面有關。
    Sn-xZn系統之制振性卻以共晶組織之S9Z為最差,使得其於等出力值下之共振壽命最小。合金中以S13Z可獲得最大的共振壽命,其次分別為S7Z>S11Z>S9Z;另在相近起始偏移量下,共振壽命順序則為S7Z>S9Z>S13Z>S11Z。此合金系統之微細共晶組織不利於基地變形使得振動能消散不易。此外,粗大初晶Zn雖有助於制振,卻會導致裂縫生成、加速裂縫傳播。
      Sn-8Zn-xBi合金之制振性及等出力條件共振壽命順序均為S9Z>S83>S86。另於Sn-xZn-3Bi合金之制振性等出力值之共振壽命隨著Zn含量提升而增加。上述結果顯示,對於Sn-Zn-Bi三元系統,Zn含量提升有助於制振性及等出力條件共振壽命,Bi含量之效應則相反。值得一提的是,Sn-5Zn-3Bi裂縫有沿初晶Sn及共晶Sn-Zn相界傳播的趨勢。

      Given that plastic deformation, even failure, may occur due to vibration, in particular when the vibration frequency meets the resonant vibration of the structure, the vibration fracture resistance of the solder should be taken into consideration during alloy design. To realize the effect of alloying and microstructural characteristics on the vibration properties of the Sn-Zn-Bi system, this study aimed to explore the vibration fracture behaviors of binary Sn-xBi (x=10, 30, 58wt%) and Sn-xZn (x=7, 9, 11, 13wt%) solder alloys, as well as ternary Sn-8Zn-xBi (x=3 and 6wt%) and Sn-xZn-3Bi(x=5, 8, 11wt%).
      Experimental results show that as for the Sn-xBi alloys, eutectic Sn-58Bi possesses superior damping capacity, greater vibration life under constant force conditions, but inferior vibration fracture resistance under constant initial deflection (ID) conditions. This can be ascribed to the continuous Sn/Bi interfaces, which absorb vibration energy via interphase sliding and provide convenient path for crack propagation.
      Sn-9Zn has a poor damping capacity among the Sn-xZn alloys. The vibration fracture resistance under constant force conditions decreases in turn from Sn-13Zn, Sn-7Zn, Sn-11Zn to Sn-9Zn, and that under constant ID conditions in decreasing order is Sn-7Zn, Sn-9Zn, Sn-13Zn and Sn-11Zn. Fine eutectic Sn-Zn structure is difficult to deform and thus leads to low damping capacity. Interestingly, massive primary Zn contributes to increased damping capacity but causes crack initiation and quick propagation.
      As for Sn-8Zn-xBi alloys, the damping capacity and vibration life under constant force conditions in the decreasing order is Sn-9Zn, Sn-8Zn-3Bi, and then Sn-8Zn-6Bi. In addition, as to the effect of Zn on the vibration properties of Sn-xZn-3Bi alloys, both the damping capacity and vibration life under constant force conditions decrease in turn from Sn-11Zn-3Bi, Sn-8Zn-3Bi to Sn-5Zn-3Bi. That is to say, Zn has positive effect while Bi shows negative effect to the aforementioned properties. Notably, the main crack of the Sn-5Zn-3Bi tends to propagate along the phase boundaries between proeutectic Sn and Sn-Zn eutectics.

    中文摘要........................................Ⅰ 英文摘要........................................Ⅱ 總目錄..........................................Ⅳ 表目錄..........................................Ⅶ 圖目錄..........................................Ⅷ 第一章 前言......................................1 第二章 文獻回顧..................................3 2-1 軟銲(soldering)技術與銲錫材料................3 2-2 銲錫合金系統.................................4 2-2-1 二元銲錫系統...............................4 2-2-2 Sn-Zn-x系三元銲錫系統......................6 2-2-3 時效行為...................................7 2-3 振動特性.....................................8 2-3-1 共振狀態及共振頻率.........................8 2-3-2 阻泥與制振性...............................9 2-3-3 D-N曲線與振動壽命.........................10 2-3-4 裂縫破壞特徵及傳播行為....................11 2-3-5 銲錫振動之變形破壞行為....................13 第三章 實驗方法.................................21 3-1合金熔煉及澆鑄試片...........................21 3-2 時效處理....................................21 3-3金相觀察及解析...............................21 3-4 硬度試驗硬度試驗............................22 3-5 拉伸試驗....................................22 3-6 振動破壞驗..................................22 3-6-1試片尺寸規格及設備振動.....................22 3-6-2振動疲勞測試...............................23 3-6-3裂縫路徑解析...............................23 3-6-4 對數衰減率(δ)之量測......................24 3-7 研究架構....................................24 第四章 實驗結果.................................32 4-1 Sn-Bi合金之Bi含量效應探討...................32 4-1-1微觀組織...................................32 4-1-2 硬度量測與拉伸性質........................32 4-1-3 振動破壞特性..............................32 (a) 對數衰減率及D-N曲線特徵.....................32 (b) 經振動後之表面裂縫及破斷面解析..............33 4-2 Sn-Zn合金之Zn含量效應釐清...................34 4-2-1微觀組織...................................34 4-2-2 拉伸性質..................................34 4-2-3 振動破壞特性..............................35 (a) 對數衰減率及D-N曲線特徵.....................35 (b) 經振動後之表面裂縫及破斷面解析..............35 4-3 Sn-Zn-Bi合金之合金添加效應探討..............36 4-3-1 Sn-Zn-xBi合金之Bi含量效應探討.............36 4-3-1-1微觀組織.................................36 4-3-1-2 拉伸性質................................36 4-3-1-3 振動破壞特性............................37 (a) 對數衰減率及D-N曲線特徵.....................37 (b) 經振動後之表面裂縫及破斷面解析..............37 4-3-2 Sn-xZn-Bi合金之Zn含量效應探討.............38 4-3-2-1微觀組織.................................38 4-3-2-2 拉伸性質................................38 4-3-2-3 振動破壞特性............................38 (a) 對數衰減率及D-N曲線特徵.....................38 (b) 經振動後之表面裂縫及破斷面解析..............39 第五章 討論.....................................71 5-1組織特性與拉伸性質之關係.....................71 5-2 Sn-Bi、Sn-Zn及Sn-Zn-Bi合金之共振壽命........71 5-3組織特徵對振動破壞特性之影響.................73 5-3-1 Sn-Bi及Sn-Zn-xBi合金......................73 5-3-1-1 Sn-Bi合金...............................73 (a) 對數衰減率及D-N曲線特徵.....................73 (b) 經振動後之表面裂縫及破斷面解析..............73 5-3-1-2 Sn-Zn-Bi合金............................74 (a) 對數衰減率及D-N曲線特徵.....................74 (b) 經振動後之表面裂縫及破斷面解析..............74 5-3-1-3 Bi含量效應..............................75 5-3-2 Sn-Zn及Sn-xZn-Bi合金......................75 5-3-2-1 Sn-Zn合金...............................75 (a) 對數衰減率及D-N曲線特徵.....................75 (b) 經振動後之表面裂縫及破斷面解析..............76 5-3-2-2 Sn-Zn-Bi合金............................76 (a) 對數衰減率及D-N曲線特徵.....................76 (b) 經振動後之表面裂縫及破斷面解析..............77 5-3-2-3 Zn含量效應..............................77 5-4 Sn-Zn-Bi合金性質探討........................78 第六章 結論.....................................87 參考資料........................................89

    1. W. J. Plumbridge, “Review Solders in Electronic”, J. Mater. Sci., Vol. 31, pp. 2501-2514, 1996.
    2. 張淑如,“鉛對人體的危害”,勞工安全衛生簡訊,第12期,17-18頁,民國84年。
    3. 賴玄金,“從IPC Work’99 會議中看無鉛銲錫電子構裝之應用現況與發展趨勢”,工業材料,第158期,99-107頁,民國89年。
    4. P. T. Vianco and D. R. Frear, “Issues in the Replacement of Lead-Bearing Solders”, JOM, Vol. 45, pp.14-19, July 1993.
    5. K. Suganuma, “Microstructural Features of Lift-Off Phenomenon in Though-Hole Circuit Soldered By Sn-Bi Alloy”, Scripta Mater., Vol. 38, pp.1333-1340, 1998.
    6. C. B. Lee, S. B. Jung, Y. E. Shih and C. C. Shur, “The Effect of Bi Concentration on Wettability of Cu Substrate by Sn-Bi Solder”, Mater. Trans., Vol. 42, pp. 751-755, 2001.
    7. W. J. Boettinger, C. A. Handwerker, B. Newbury, T. Y. Pan and J. M. Nicholson, “Mechanism of Fillet Lifting in Sn-Bi Alloys”, J. Electron. Mater., Vol. 31, pp. 545-550, 2002.
    8. M. McCormack and S. Jin, “Progress in the Design of New Lead-Free Solder Alloys”, JOM, July, Vol. 45, pp. 36-40, 1993.
    9. E. P. Wood and K. L. Nimmo, “In Search of New Lead-Free Electronic Solders”, J. Electron. Mater., Vol. 23, pp. 709-713, 1994.
    10. N. C. Lee, “Getting Ready for Lead-Free Solders” Soldering and Surface Mount Technology, No. 26, pp. 65-68, 1997.
    11. Q. J. Yang, H. L. J. Pang, Z. P. Wang, G. H. Lim, F. F. Yap and R. M. Lin, “Vibration reliability characterization of PBGA assemblies” Microelectronic Reliability 40, pp. 1097-1107, 2000.
    12. S. M. McGuire, M. E. Fine, O. Buck and J. D. Achenbach, “Nondestructive Detection of Fatigue Cracks in PM 304 Stainless Steel by Internal Friction and Elasticity”, J. Mater. Res., Vol. 8, pp. 2216-2223, 1993.
    13. S. M. McGuire, M. E. Fine and J. D. Achenbach, “Crack Detection by Resonant Frequency Measurements”, Metal. Trans. A, Vol. 26A, pp. 1123-1127, 1995.
    14. S. Vaynman and M. E. Fine, “Development of Fluxes for Lead-Free Solders Containing Zinc”, Scripta Materialia, Vol. 41, pp. 1269-1271, 1999.
    15. B. Trumble, “Get the LEAD out”, IEEE Spectrum, pp. 55-60, May 1998.
    16. M. Abtew and G. Selvaduray, “Lead-free Solders in Microelectronics”, Mater. Sci. Eng., Vol. 27, pp.95-141, 2000.
    17. J. Glazer, “Metallurgy of Low Temperature Pb-Free Solders for Electronic Assembly”, International Mater. Rev., Vol. 40, pp. 65-93, 1995.
    18. 莊強名,“無鉛化共晶銲錫合金之振動破壞特性研究”,國立成功大學材料科學及工程學系,博士論文,民國90年。
    19. J. M. Song, T. S. Lui, L. H. Chan and D. Y. Tsai, “Resonant Vibration Behavior of Lead-Free Solders”, J. Electron. Mater., Vol. 32, 2003.
    20. I. Larky and W. T. Thompson, “The Pb-Sn System”, Bulletin of Alloy Phase Diagrams, Vol. 9, pp. 142-152, 1998.
    21. M. McCormack and S. Jin, "New, Lead-Free Solders", J. Electron. Mater. Vol. 23, pp. 635-640, 1994.
    22. K. Kawashima, T. Ito and M. Samurai, “Strain-Rate and Temperature- Dependent Stress-Strain Curves of Sn-Pb Eutectic Alloy”, J. Mater. Sci., Vol. 27, pp. 6387-6390, 1992.
    23. Binary Alloy Phase Diagrams: Vol. 1, T. b. Missals, ASM, USA, pp. 540-541, 1986.
    24. M. McCormack, H. S. Chen, G. W. Camelot and S. Jin, “Significantly Improved Mechanical Properties of Bi-Sn Solder Alloys by Ag-Doping”, J. Electron. Mater. Vol. 26, pp. 954-958, 1997.
    25. J. Glazer, “Metallurgy of Low Temperature Pb-Free Solders For Electronic Assembly”, Int. Mater. Rev., Vol. 40, p. 65, 1995.
    26. J. Glazer, “Microstructure and Mechanical Properties of Pb-Free Solder Alloy for Low-Cost Electronic Assembly: A Review”, J. Electron. Mater., Vol. 23, pp.693-699, 1994.
    27. Y. Y. Chen, J. G. Duh and B. S. Chiou, “The Effect of Substrate Surface Roughness On The Wettability of Sn-Bi Solders”, J. Mater. Sci.- Mater. El., Vol. 11, pp. 279-283, 2000.
    28. C. B. Lee, S. B. Jung, Y. E. Shih and C. C. Shur, “The Effect of Bi Concentration on Wettability of Cu Substrate By Sn-Bi Solders”, Mater. Trans., Vol. 42, pp. 751-755, 2001.
    29. J. L. Freer Goldstein, J. W. Morris and Jr., “Microstructural Development of Eutectic Bi-Sn and Eutectic In-Sn During High Temperature Deformation”, J. Electron. Mater., Vol. 23, pp. 477-486, 1994.
    30. G. S. Al-Ganainy, M. R. Nagy, B. A. Khalifa and R. Afify, Phys. Stat. Sol., 158, pp. 463-469, 1996.
    31. T. H. Alden, “The Origin of Superplasticity In the Sn-5%Bi Alloy”, Acta Metall., Vol. 15, pp. 469-479, 1967.
    32. C. H. Raeder, D. Mitlin and R. W. Messler, Jr., “Modelling the Creep Rates of Eutectic Bi-Sn Solder Using the Data from its Constitutive Phases”, J. Mater. Sci., Vol. 33, pp. 4503-4508, 1998.
    33. J. N. Hu, H. Tanaka and T. Narita, “Aging Behavior of a Sn-Bi Eutectic Solder at Temperatures Between 233 and 373 K”, Mater. Trans., Vol. 42, pp. 769-775, 2001.
    34. Y. Miyazawa and T. Ariga, “Influences of Aging Treatment on Microstructure and Hardness of Sn- (Ag, Bi, Zn) Eutectic Solder Alloys”, Mater. Trans., Vol. 42, pp. 776-782, 2001.
    35. ASM handbook, Hugh Baker, ASM International, Materials Park, Ohio, Vol. 3 Alloy Phase Diagrams, 1992.
    36. K. Suganuma, T. ShotoKu, Y. Nakamura and K. Niihara, “Wetting and Interface Microstructure between Sn-Zn Binary Alloys and Cu”, J. Mater. Res., Vol. 13, pp. 2859-2865, 1998.
    37. M. McCormack and S. Jin, "New, Lead-Free Solders", J. Electron. Mater., Vol. 23, pp. 635-640, 1994.
    38. J. Glazer, “Metallurgy of Low Temperature Pb-free Solders for Electronic Assembly”, International Materials Reviews, Vol. 40, pp. 65-93, 1995.
    39. S. Kang, A. Sarkhel, “Lead-free Solders for Electronic Packaging”, J. Electron. Mater., Vol. 23 pp. 701-707, 1994.
    40. W. J. Tomlinson and A. Fullylove, “Strength of Tin-based Soldered Joints”, J. Mater. Sci., Vol. 27, pp.5777-5782, 1992.
    41. N. C. Lee, “Getting Ready for Lead-free Solders”, Soldering & Surface Mount Technology, No. 26, pp. 65-69, July 1997.
    42. S. H. Huh, K. S. Kim and K. Suganuma, “Effect of Ag Addition on The Microstructural and Mechanical Properties of Sn-Cu Eutectic Solder”, Mater. Trans., Vol. 43, No. 5, pp. 739-744, 2001.
    43. J. W. Morris, Jr., J. L. Freer Goldstein and Z. Mei, “Microstructure and Mechanical Properties of Sn-In and Sn-Bi Solders”, JOM, pp.25-27, July 1993.
    44. Z. Mei and J. W. Morris, Jr. “Characterization of Eutectic Sn-Bi Solder Joints”, J. Electron. Mater., Vol. 21, pp. 599-607, 1992.
    45. Z. Mei and J. W. Morris, Jr. “Superplastic Creep of low Melting Point Solder Joints”, J. Electron. Mater., Vol. 21, pp. 401-407, 1992.
    46. 陳信文,無鉛銲料簡介,電子與材料,第一期,74-77頁,民國88年。
    47. Y. S. Kin, K. S. Kim, C. W. Hwang and K. Suganuma, “Effect of Composition and Cooling Rate on Microstructure and Tensile Properties of Sn-Zn-Bi Alloys”, J. Alloys and compounds, 352, pp.237-245, 2003.
    48. I. Shohji, T. Nakamura, F. Mori and S. Fujiuchi, “Interface Reaction and Mechanical Properties of Lead-Free Sn-Zn Alloy/Cu Joints”, Mater. Trans., Vol. 43, pp. 1797-1801, 2002.
    49. J. M. Song, G. F. Lan, T. S. Lui and L. H. Chen, “Microstructure and Tensile Properties of Sn-9Zn-xAg Lead-Free Solder Alloys”, Scripta Materialia, Vol. 48, pp. 1047-1051, 2003.
    50. T. Hirano, K. Fukuda, K Ito, T. Kiga and Y. Taniguchi, “Reliability of Lead Free Solder Joint by Using Chip Size Package”, Proceedings of the 2001 IEEE International Symposium on Electronics and Environment, pp. 285-289, 2001.
    51. A. Sebaoun, D. Vincent and D.Treheux, “Al-Zn-Sn phase diagram- isothermal diffusion in ternary system ” Mater. Sci.. Tech., Vol.3, pp.241-248, April 1987.
    52. K. L. Lin, L. H. Wen and T. P. Liu, “The Microstructure of The Sn-Zn-Al Splder Alloys”, J. Electron. Mater., Vol. 27, pp. 97-105, 1998.
    53. S. C. Cheng and K. L. Lin, “The Thermal Property of Lead-Free Sn-8. 55Zn-1Ag-xAl Solder Alloys and its Wetting Interaction with Cu”, J. Electron. Mater., Vol. 31, pp. 940-945, 2002.
    54. C. M. Chuang, T. S. Lui and L. H. Chen, “Effect of Aluminum Addition on Tensile Properties of Naturally Aging Sn-Zn Eutectic solder”, J. Mater. Sci., Vol. 37, pp. 191-195, 2002.
    55. 藍國峰,“Sn-Zn-xAg無鉛銲錫合金之振動破壞特性研究”,國立成功大學材料科學及工程學系,碩士論文,民國91年。
    56. K. I. Chen and K. L. Lin, “The Microstructures and Mechanical Properties of the Sn-Zn-Ag-Al-Ga Solder Alloys-the Effect of Ag”, J Electron. Mater., Vol. 31, p. 861, 2002.
    57. T. Shimizu, H. Ishikawa, I. Ohnuma and K. Ishida, “Zn-Al-Mg-Ga Alloys as Pb-Free Solder for Die-Attaching Use”, J. Electron. Mater., Vol. 28, p. 1172, 1999.
    58. 陳剛毅、吳信賢,“Ga元素對Sn-9Zn銲錫合金之微結構與機械性質影響”,中華民國材料科學學會論文集,民國92年。
    59. T. Takemoto, M. Takahashi and A. Matsunawa, American Society of Mechanical Engineers, EEP, Vol. 26-1, pp. 575-580, 1999.
    60. M. McCormack, S. Jin, H. S. Chen and D. A. Machusak, “New Lead-Free Sn-Zn-In Solder Alloys”, J. Electron. Mater., Vol. 23, pp. 687-690, 1994.
    61. C. M. L. Wu, D. Q. Yu, C. M. T Law and L. Wang, “The Properties of Sn-9Zn Lead-Free Solder Alloys Doped With Trace Rare Earth Elements”, J. Electron. Mater., Vol. 31, pp. 921-927, 2002.
    62. K. L. Lin and L. H. Wen, “The Wetting od Copper By Al-Zn-Sn Solders”, J. Mater. Sci., Mater. Electron., Vol. 9, pp 5-8, 1998.
    63. B. T. Lampe, “Room Temperature Aging Properties of Some Solder Alloys”, Welding Res., Oct., pp. 330s-340s, 1976.
    64. 殷翠梅,“Sn-Ag系無鉛銲錫之振動破壞特性探討”,國立成功大學材料科學及工程學系,碩士論文,民國90年。
    65. T. Takemoto, M. Takahashi and A. Matsunawa, “Tensile Deformation Properties and Microstructure of Sn-Zn System Lead-Free Solders”, EEP-vol. 26-1, Advances in Electronic Packaging, Vol. 1, pp. 575-580, 1999.
    66. Mechanical Vibrations, S. S. Rao, Addison-Wesley Publishing Company, Inc., 2nd ed., pp.4-160, 1990.
    67. S. M. McGuire, M. E. Fine, O. Buck and J. D. Achenbach, “Nondestructive Detection of Fatigue Cracks in PM 304 Stainless Steel by Internal Friction and Elasticity”, J. Mater. Res., Vol. 8, pp. 2216-2223, 1993.
    68. S. M. McGuire, M. E. Fine and J. D. Achenbach, “Crack Detection by Resonant Frequency Measurements”, Metal. Trans. A, Vol. 26A, pp. 1123-1127, 1995.
    69. 李芳儀,“銅含量對Sn-Ag-Cu無鉛銲錫振動破壞特性之研究”,國立成功大學材料科學及工程學系,碩士論文,民國92年。
    70. C. Y. Tang, M. Jie, W. Shen and K. C. Yung, “The Degradation of Elastic Properties of Aluminum Alloy 2024T3 Due to Strain Damage”, Scripta Metall. Mater., Vol. 38, pp. 221-238, 1998.
    71. Mechanical Vibrations, S. S. Rao, Addison-Wesley Publishing Company, Inc., 2nd ed., pp.4-160, 1990.
    72. 振動與噪音的阻尼控制,孫慶鴻、張啟軍、姚慧珠編著,機械工業出版社,北京, 38-57頁,民國81年。
    73. A. Granato K. Lucke, “Application of Dislocation Theory to Internal Friction Phenomena at High Frequencies”, J. Appl. Phys., Vol. 27, pp. 583-593, 1956.
    74. S. E. Urreta De Pereyre, A. A. Ghilarducci De Salva and F. Louchet, “Precipitation Internal Friction Peak in Al-Mg-Si”, Phys. Stat. Sol., Vol. 139, pp.345-360, 1993.
    75. J. Zhang, R. J. Perez and E. J. Lavernia, “Documentation of Damping Capacity of Metallic, Ceramic and Metal-Matrix Composite Materials”, J. Mater. Sci., Vol.28, pp. 2395-2404, 1993.
    76. R. J. Perez, J. Zhang, M. N. Gungor and E. J. Lavernia, “Damping Behavior of 6061Al/Gr Metal Matrix Composites”, Metall. Trans., Vol. 24A, pp. 701-711, 1993.
    77. E. J. Lavernia, R. J. Perez and J. Zhang, “Damping Behavior of Discontinuously Reinforced Al Alloy Metal-Matrix composites”, Metall. Mater. Trans., Vol. 26A, pp. 2803-2818, 1995.
    78. M. Okabe, T. Mori and T. Mura, “Internal Friction caused By Diffusion Around a Second-Phase Particle Al-Si Alloy”, Phil. Mag. A, Vol. 44, pp. 1-12, 1981.
    79. A. Wolfenden, L. S. Cook and J. M. Wolla, “Phase Changes and Damping in Crystalline Materials”, M3D: Mechanics and Mechanism of Material Damping, ASTM STP 1169, V. K. Kinra and A. Wolfenden, Eds., American Society for Testing and Materials Philadelpgia, pp. 124-141, 1992.
    80. K. Suganuma, S. H. Huh, K. Kim, H. Nakase and Y. Nakamura, “Effect of Ag Content on Properties of Sn-Ag Binary Alloy Solder” Mater. Trans, JIM, Vol. 42, pp. 286-291, 2001.
    81. Q. J. Yang, H. L. J. Pang, Z. P. Wang, G. H. Lim, F. F. Yap and R. M. Lin, “Vibration reliability characterization of PBGA assemblies” Microelectronic Reliability 40, pp. 1097-1107, 2000.
    82. 洪佳和,“亞共晶鋁-矽(-鎂)合金之共振破壞特性及其冶金影響因素之探討”,國立成功大學材料科學及工程學系,博士論文,民國90年。
    83. Fatigue Threshold, D. Taylor, Butterworth and Co. Ltd, pp. 71-91, 1989.
    84. Fatigue of Materials, S. Suresh, Cambridge University Press. New York, pp. 292, 1991.
    85. S. Suresh, “Crack Deflection: Implication for the Growth of Long and Short Fatigue Cracks”, Metall. Trans., Vol. 14A, pp. 2375-2385, 1983.
    86. W. Elber, “ Fatigue-Crack Closure under Cyclic Tension”, Eng. Fract. Mech., Vol. 2, pp. 37-45, 1971.
    87. S. H. Wang, C. Muller and H. E. Exner, “A Model for Roughness-Induced Fatigue Crack Closure”, Metall. Mater. Trans A, Vol. 29A, pp. 1933-1939, 1998.
    88. S. Suresh, “Fatigue Crack Deflection and Fracture Surface Contact: Micromechanical Models”, Metall. Trans. A, Vol. 16A, pp. 249-260, 1985.
    89. W. J. Drury, A. M. Gokhale and S. D. Antolovich, “Effect of Crack Surface Geometry on Fatigue Crack Closure”, Metall. Trans. A, Vol. 26A, pp. 2651-2663, 1995.
    90. A. J. Padkin, M. F. Brereton and J. E. King, “Fatigue Crack Growth in Two Phase Alloys”, Mater. Sci. Tech., Vol. 3, pp. 217-223, 1987.
    91. D. M. Knowles and J. E. King, “Role of Reinforcement/Matrix Interfacial Strength in Fatigue Crack Propagation in Particulate SiC Reinforced Aluminum Alloy 8090”, Mater. Sci. Tech., Vol. 8, pp. 500-509, 1992.
    92. C. Masuda and Y. Tanaka, “Fatigue Properties and Fatigue Fracture Mechanisms of SiC Wiskers or SiC Particlate-Reinforced Aluminum Composites”, J. Mater. Sci., Vol. 27, pp. 413-422, 1992.
    93. S. Kumai, J. E. King and J. F. Knott, “Fatigue in SiC- Particulate-Reinforced Aluminum Alloy Composites”, Mater. Sci. Eng., Vol. A146, pp. 317-326, 1991.
    94. J. J. Mason and R. O. Ritchie, “Fatigue Crack Growth Resistance in SiC Particulate and Whisker Reinforced P/M 2124 Aluminum Matrix Composites”, Mater. Sci. Eng., Vol. A231, pp. 170-187, 1997.
    95. Mechanical Vibrations, S. S. Rao, Addison-Wesley Publishing Company, Inc., 1990, 2nd ed., pp.4-160.
    96. C. Kanchanomai et al.,” Low cycle fatigue behavior and mechanisms of a eutectic Sn–Pb solder 63Sn/37Pb”, Inter. J. of Fatigue, pp. 671-683, 2002.

    下載圖示 校內:立即公開
    校外:2004-07-12公開
    QR CODE