簡易檢索 / 詳目顯示

研究生: 藍志學
Lan, Chih-Hsueh
論文名稱: III族氮化物半導體光電特性之研究
Optoelectronic Properties of III-Nitride Semiconductor
指導教授: 張守進
Chang, Shoou-Jinn
共同指導: 黃俊達
Hwang, Jun-Dar
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 118
中文關鍵詞: 氮化物奈米線
外文關鍵詞: nitride, nanowire
相關次數: 點閱:110下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的目的在於分別使用濺鍍法或水溶液法成長不同的氧化物材料,例如:銦錫氧化物(ITO)、二氧化矽(SiO2)和氧化鋅(ZnO)於三族氮化物半導體上,接著進行其光電特性的探討與研究。
    本論文一開始探討了電漿對於III 族氮化物半導體材料表面損傷的影響,我們直接利用濺鍍機台在不同濺射功率的條件下,將ITO 材料成長於P 型氮化物半導體上,並有系統地針對其電特性作一詳細研究。研究結果發現,在濺鍍ITO 材料過程中,電漿的轟擊會造成P 型氮化物半導體表面產生氮空缺,此氮空缺將會補償P 型氮化物半導體表面的電洞濃度,進而造成P 型氮化物半導體表面會反轉成N 型,而且在此研究也發現到,當樣品在600 ℃和700 ℃進行熱退火時會產生出更多的氮空缺,使得電壓-電流曲線更呈現整流特性,此外,當退火溫度升高至800 ℃時能有效地回復氮空缺,改善P 型半導體材料表面特性。
    接著,我們成功地利用液相沈積法沈積SiO2 材料於AlGaN 材料上並搭配表面硫化處理製作出金屬-氧化物-半導體電容結構,研究發現當使用表面硫化處理過後,能夠有效地降低元件漏電流,相較於未經硫化處理過的元件,漏電流密度明顯地降低約兩個數量級。從電容-電壓的量測也能發現相同的趨勢,相較之下,有經過硫化處理過後的元件,其平帶電壓的位移、固定氧化電荷密度以及界面缺陷密度的值分別為2.01 V、7.22x1011 cm-2和7.19x1011 cm-2eV-1 並且搭配X 光光電子質譜儀去探討硫化處理對於表面影響的機制。另一方面,利用硫化處理以及SiO2 液相沈積法成功地製作出AlGaN 金屬-氧化物-半導體光檢測器。研究發現,經過硫化處理過的金屬-氧化物-半導體光檢測器能有效地降低約兩個數量級的漏電流以及將蕭特基障壁數值從原先的0.77eV 提高至0.86eV,正因如此,我們提升了光檢測器的光暗電流比值。
    本論文最後一個部分,我們使用兩種不同水溶液材料,硝酸鋅和醋酸鋅成長ZnO奈米線於P 型氮化物半導體上,接著利用掃描式電子顯微鏡、室溫光激發光量測和X光光電子質譜儀進行材料分析。研究發現,利用硝酸鋅成長出的ZnO 奈米線相較於醋酸鋅具有較薄的奈米線,且奈米線平均直徑也小了約5 倍左右;但利用醋酸鋅所成長出的ZnO 奈米線具有較佳的電特性,對於這兩種方法製成的ZnO 奈米線/P 型氮化物異質接面二極體,與硝酸鋅比較,以醋酸鋅製成的異質接面二極體其起始電壓以及理想因子可以分別從2.2V 降低至2.0V 以及3.7 降低至2.14,漏電流密度在-4V 的偏壓下大約能夠降低約一個數量級。另一方面,為了使硝酸鋅所成長的ZnO 奈米線能更有效地進一步改善元件電特性我們利用液相沈積法成長SiO2 於ZnO 奈米線/P 型氮化物異質接面二極體元件上。相較於沒有SiO2 的元件,當使用SiO2 當作表面保護層時,其元件在-4 V 偏壓下,漏電流能降低約15.7 倍,理想因子也能從3.7 改善至2.2,這主要是因為SiO2 能有效地填補元件表面的懸浮鍵;此外,利用室溫光激發光量測可以發現,利用SiO2 當作表面保護層的元件具有較強的光激發光強度。

    In this dissertation, different oxide materials, such as Indium tin oxide (ITO), silicon dioxide (SiO2), and zinc oxide (ZnO) were deposited onto III-nitride semiconductors using sputter or aqueous solution. Material properties of these oxide materials were investigated and optoelectronic properties of the samples prepared by these methods were studied.
    In the beginning of this dissertation, we directly sputtered ITO films onto p-GaN to study the plasma induced damage on III-nitride material. The effects of different sputter power on the electrical properties of ITO/p-GaN were systematically studied. It was found that plasma bombardment during sputtering will induce nitrogen vacancies and compensate hole concentration in p-GaN surface or even convert p-GaN into n-GaN. It was also found that the samples annealed at 600 and 700℃ will generate more nitrogen vacancies and enhance rectifying behavior in ITO/p-GaN contact. Furthermore, it was observed that 800℃ annealing could effectively recover the plasma induced nitrogen vacancies and/or traps.
    Following, Nitride-based metal-insulator-semiconductor (MIS) capacitors were prepared having liquid-phase deposited (LPD) silicon-dioxide. Effects of (NH4)2Sx treated AlGaN template on the optoelectrronic properties of MIS capacitors were studied in detail. It has been seen that we can significantly reduce leakage current densities of the fabricated Al/LPD-SiO2/AlGaN MIS capacitors by using (NH4)2Sx treatment. Compared to the MIS capacitors without (NH4)2Sx treatment, the leakage current densities were remarkably reduced by two orders of magnitude in (NH4)2Sx treated MIS capacitors. Capacitance-voltage measurement showed that the MIS capacitor without (NH4)2Sx treatment was rather leaky. In contrast, the flat-band voltage shift, fixed oxide charge density and interface trap density of the fabricated MIS capacitors with (NH4)2Sx treatment were much improved to be 2.01 V, 7.22x1011 cm-2 and 7.19x1011 cm-2eV-1, respectively. Related mechanism of (NH4)2Sx treatment was discussed by x-ray photoelectron
    spectrometer. On the other hand, (NH4)2Sx treatment was employed to enhance the efficiency of AlGaN metal-insulator-semiconductor (MIS) photodetectors (PDs) with LPD-SiO2 layer. With (NH4)2Sx treatment, it was demonstrated that one can reduce the reverse leakage current of the PDs by two orders of magnitude and enhance the effective Schottky-barrier height from 0.77 to 0.86 eV. It was also revealed that the (NH4)2Sx treatment can significantly reduce the interface state density, Dit, at AlGaN/LPD-oxide interface. Photo-to-dark current ratio obtained from the PDs with (NH4)2Sx treatment was also enhanced.
    Finally, we grow ZnO nanowires on p-GaN using different solutions of zinc nitrate and zinc acetate. Material properties of ZnO nanowires were studied by scanning electron microscope, room-temperature photoluminescence, and x-ray photoelectron spectroscopy . The ZnO grown by zinc nitrate had thinner nanowires, average diameter being reduced by about 5 times, than that grown by zinc acetate. Fewer surface defects and better electrical performance were obtained in zinc acetate-ZnO. Turn-on voltage and ideality factor were reduced from 2.2 to 2.0 V and 3.7 to 2.14, for the ZnO nanowires/p-GaN heterojunction (HJ) diodes grown by zinc nitrate and zinc acetate, respectively. Leakage current density was also decreased by about one order under -4V reverse-bias voltage. On the other hand, the electrical characteristics of ZnO nanowires/p-GaN HJ-diodes were much improved using a SiO2 blocking-layer, which was deposited by liquid-phase deposition method. As compared to the fabricated HJ-diodes without SiO2 blocking-layer, the leakage current was reduced by 15.7 times under -4V reverse-bias for the one with SiO2 blocking-layer, and the ideality factor was improved from 4.5 to 2.2. Passivation of dangling bonds on ZnO and GaN surface are responsible for the improvement in ZnO nanowires/p-GaN HJ-diodes. Moreover, room-temperature photoluminescence showed the ZnO samples with SiO2 blocking-layer exhibited a higher excitonic emission than that without SiO2.

    Abstract (in Chinese) ---------------------------------------------------------------- I Abstract (in English) -------------------------------------------------------------- III Acknowledgements ---------------------------------------------------------------- VI Contents ---------------------------------------------------------------------------X Table Captions --------------------------------------------------------------------XIII Figures Captions ------------------------------------------------------------------XIV CHAPTER 1 Introduction --------------------------------------------------------- 1 1-1 Background of III-Nitrides and Zinc Oxide Semiconductor -------------------- 1 1-1-1 Background of III-Nitrides Semiconductor ------------1 1-1-2 Background of Zinc Oxide III-Nitrides Semiconductor -------------------------- 2 1-2 III-Nitrides Optical Devices and Motivation ----------------------------------------- 4 1-2-1 Light Emitting Diodes (LEDs) ------------------------------------------------------- 4 1-2-2 Ultraviolet Photodetectors (PDs) ---------------------------------------------------- 6 1-3 Organization of Dissertation -------------------------------------------------------------- 6 Ch1 References ----------------------------------------------------------------------------------- 8 CHAPTER 2 Experimental Equipment and Relevant Theory ---- 18 2-1 MOCVD Growth Mechanisms of Nitride-Based Semiconductors ---------- 18 2-2 In Situ Monitoring of Epitaxial Layer Growth ----------------------------------------- 22 2-2-1 Introduction of LayTec EpiCurve -------------------------------------------------- 22 2-2-2 Growth Rate and Layer Thickness ------------------------------------------------- 23 2-2-3 Composition and Ternary Materials ----------------------------------------------- 25 2-2-4 Surface Quality ----------------------------------------------------------------------- 25 2-2-5 Advantage Topic ---------------------------------------------------------------------- 26 2-2-6 True Temperature Measurement ---------------------------------------------------- 26 2-3 Theory and Principle of MSM Photodetectors -------------------------------------- 30 2-3-1 Theory of Photodetectors ------------------------------------------------------------ 30 2-3-2 Principle of MSM Photodetectors ------------------ 32 2-4 Background of Radio Frequency Magnetron Sputtering System ---------- 32 2-5 Experimental Details and Analyses ------------------------------------------------------ 34 2-5-1 Hall Measurement System ---------------------------------------------------------- 34 2-5-2 Photoluminescence (PL) Spectrum System --------------------------------------- 34 2-5-3 Scanning Electron Microscope (SEM) -------------------------------------------- 36 2-5-4 X-ray Photoelectron Spectroscopy (XPS) ----------------------------------------- 36 2-5-5 Auger Electron Spectroscopy (AES) ----------------------------------------------- 37 2-5-6 Current-Voltage (I-V) Measurement System ------------------------------------- 38 Ch2 References --------------------------------------------------------------------------------- 39 CHAPTER 3 Sputtered Indium-Tin-Oxide on p-GaN --------------------- 53 3-1 Experimental Procedures and Device Fabrication ------ 54 3-2 Results and Discussion -------------------------------------------------------------------- 55 3-3 Summary ------------------------------------------------------------------------------------ 58 Ch3 References --------------------------------------------------------------------------------- 59 CHAPTER 4 (NH4)2Sx-Treated AlGaN MIS Photodetectors ------------ 70 4-1 Nitride-Based Metal-Insulator-Semiconductor Capacitors with Liquid-Phase Deposition Oxide and (NH4)2Sx Pretreatment Prepared on Sapphire Substrates ---------- 70 4-1-1 Experimental Procedures and Fabrication of AlGaN MIS Capacitors ----- 72 4-1-2 Surface Physical Properties of AlGaN ------------- 72 4-1-3 Material Properties of LPD-SiO2 -------------- 73 4-1-4 Electrical Properties of AlGaN MIS Capacitors ----- 73 4-1-5 Summary -------------------------------------- 75 4-2 (NH4)2Sx-Treated AlGaN MIS Photodetectors with LPD SiO2 Layer-------- 75 4-2-1 Fabrication of AlGaN MIS Photodetectors --------- 76 4-2-2 Optical and Physical Properties of AlGaN Surface -- 77 4-2-3 Electrical Properties of AlGaN Surface ---------- 78 4-2-4 Summary --------------------------------------- 80 Ch4 References --------------------------------------------------------------------------------- 81 CHAPTER 5 ZnO Nanowires and ZnO/p-GaN Heterojunction Diodes -----96 5-1 Investigations of ZnO Nanowires and ZnO/p-GaN Heterojunction Diodes Grown by Different Aqueous Solutions Zinc Nitrate and Zinc Acetate ---------- 96 5-1-1 Growth of ZnO Nanowires, Nanorods and Devices Fabrication --- 96 5-1-2 Optical and Physical Properties of ZnO Nanowires and Nanorods ------ 97 5-1-3 Electrical Properties of ZnO/p-GaN Heterojunction --99 5-1-4 Summary ------------------------------------ 99 5-2 Using SiO2 Blocking-Layer to Improve the Electrical Characteristics of ZnO Nanowires/p-GaN Heterojunction Diode--------------- 100 5-2-1 Fabrication of ZnO/p-GaN Heterojunction with and without LPD-SiO2 ---- 100 5-2-2 Electrical and Optical Properties of ZnO/p-GaN Heterojunction with and without LPD-SiO2 --------------101 5-2-3 Summary ------------------------------- 103 Ch5 References --------------------------------------------------------------------------------- 105 CHAPTER 6 Conclusions and Future Work ---------- 115 6-1 Conclusions ------------------------------ 115 6-2 Future Work ----------------------------------- 116 Ch6 References -------------------------------------------------------------------------------- 118

    [1] M. A. Khan, M. A. Shur, J. N. Kuzunia, Q. Chen, J. Burm and W. Schaff, Appl. Phys. Lett. 66, 1083 (1995)
    [2] O. Aktas, Z. F. Fan, S. N. Mohammad, A. E. Botchkarev and H. Morkoc, Appl. Phys. Lett. 69, 3872 (1996)
    [3] S. Nakamura, T. Mokia and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994)
    [4] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita and Y. Sugimoto, H. Kiyodo, Appl. Phys. Lett. 70, 868 (1996)
    [5] M. A. Khan, J. N. Kuznia, D. T. Olson and M. Blasingame, Appl. Phys. Lett. 63, 2455 (1993)
    [6] M. A. Khan, A. R. Bhattarai, J. N. Kuznia and D. T. Olson, Appl. Phys. Lett. 63, 1214 (1993)
    [7] H. P. Maruska and J. J. Tietjen, Appl. Phys. Lett. 15, 327 (1969)
    [8] H. M. Manasevit, F. M. Erdmann and W. I. Simpson, J. Electrochem. Soc. 118, 1864 (1971)
    [9] I. Akasaki et al. MITI report in Japanse only, 1974.; I. Akasaki and I. Hayashi, Ind. Sci. Technol. 17, 48 (1976)
    [10] H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda, Appl. Phys. Lett. 48, 353(1986)
    [11] H. Amano, M. Kito, K. Hiramatsu and I. Akasaki, Jpn. J. Appl. Phys. Lett. 28, L2112(1989)
    [12] S. Nakamura, T. Mukai, M. Senoh and M. Iwasa, Jpn. J. Appl. Phys. Lett. 31, L139(1992)
    [13] M. Iwaya, T. Takeuchi, S. Yamaguchi, C. Wetzel, H. Amano and I. Akasaki, Jpn. J. Appl. Phys. Lett. 37, L316(1998)
    [14] E. D. Bourret-Courchesne, S. Kellermann, K. M. Yu, M. Benamara, Z. Liliental-Weber, J. Washburn, S. J. C. Irvine and A. Stafford, Appl. Phys. Lett. 77, 3562 (2000)
    [15] S. Haffouz, H. Lahreche, P. Vennegues, B. Beaumont, F. Ombes and P. Gibart, Appl. Phys. Lett. 73, 1278 (1998)
    [16] S. Sakai, T. Wang, Y. Morishima and Y. Naoi, J. Cryst. Growth. 221, 334 (2000)
    [17] P. Kung, D. Walker, M. Hamilton, J. Diaz and M. Razeghi, Appl. Phys. Lett. 74, 570(1999)
    [18] I. Kidoguchi, A. Ishibashi, G. Sugahara and Y. Ban, Appl. Phys. Lett. 76, 3768 (2000)
    [19] R. C. Neville and C. A. Mead, J. Appl. Phys. 41, 3795 (1970)
    [20] B. M. Ataev, Y. I. Alivov, V. A. Nikitenko, M. V. Chukichev, V. V. Mamedov, S. S. Makhmudov, J. Optoelectron. Adv. Mater. 5, 899 (2003)
    [21] M. J. Liu and H. K. Kim, Appl. Phys. Lett. 84, 173 (2004)
    [22] S. J. Chang, T. J. Hsueh, C. L. Hsu, Y. R. Lin, I. C. Chen and B. R. Huang, Nanotechnology 19, 095505 (2008)
    [23] Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912-3918 (1998)
    [24] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo and T. Steiner, J. Vac. Sci. Technol. B. 22, 932-948 (2004)
    [25] U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho and H. Morkoc, J. Appl. Phys. 98, 041301 (2005)
    [26] K. Keem, H. Kim, G. T. Kim, J. S. Lee, B. Min, K. Cho, M. Y. Sung and S. Kim, Appl. Phys. Lett. 84, 4376 (2004)
    [27] M. S. Arnold, P. Avouris, Z. W. Pan and Z. L. Wang, J. Phys. Chem. B 107, 659 (2003)
    [28] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, Science 292, 1897 (2001)
    [29] C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh and H. J. Lee, Appl. Phys. Lett. 81, 43648 (2002)
    [30] W. I. Park, Y. H. Jun, S. W. Jung and G. C. Yi, Appl. Phys. Lett. 82, 964 (2003)
    [31] G. C. Yi, C. Wang and W. Ⅱ Park, Semicond. Sci. Technol. 20, S22 (2005)
    [32] J. H. Park, H. J. Choi, Y. J. Choi, S. H. Sohn and J. G. Park, J. Mater. Chem. 14, 35 (2004)
    [33] J. H. Park, H. J. Choi and J. G. Park, J. Cryst. Growth 263, 237 (2004)
    [34] T. Yamamoto, H. Katayama-Yoshida, Jpn. J. Appl. Phys. Lett. 36, L1453 (1997)
    [35] M. Joseph, H. Tabata, T. Kawai, Jpn. J. Appl. Phys. Lett. 38, L1205 (1999)
    [36] G. Xiong, J. Wilkinson, B. Mischuck, S. Tuzemen, K. Ucer, R. Williams, Appl. Phys. Lett. 80, 1195 (2002)
    [37] J. Nause, M. Pan, V. Rengarajan, W. Nemeth, S. Ganesan, A. Payne, N. Li, L. Ferguson, SPIE 5941, 70 (2005)
    [38] Z. Ye, W. Xu, Y. Zeng, J. Liu, B. Zhao, L. Zhu, J. Lu, J. Huang, L. Wang, X. Li, Chin. J. Semicond. 26, 2264 (2005)
    [39] J. Bian, X. Li, C. Zhang, L. Chen, Q. Yao, Appl. Phys. Lett. 84, 3783 (2004)
    [40] K. Kim, H. Kim, D. Hwang, J. Lim, S. Park, Appl. Phys. Lett. 83, 63 (2003)
    [41] X. Zhou, Z. Ye, F. Chen, W. Xu, Y. Miao, J. Huang, J. Lu, L. Zhu, B. Zhao, Chin. J. Semicond. 27, 91 (2006)
    [42] J. Yang, H. Kim, J. Lim, D. Hwang, J. Oh, S. Park, J. Electrochem. Soc. 153, G242(2006)
    [43] P. Wang, N. Chen, Z. Yin, Appl. Phys. Lett. 88, 152102 (2006)
    [44] Y. Heo, Y. Kwon, Y. Li, S. Pearton, D. Norton, Appl. Phys. Lett. 84, 3474 (2004)
    [45] V. Y. Dsvydov et al. , Phys. Status Solidi b 229, R1 (2002)
    [46] V. Y. Dsvydov et al. , Phys. Status Solidi b 230, R4 (2002)
    [47] J. F. Lin, M. C. Wu, M. J. Jou, C. M. Chang, B. J. Lee and Y. T. Tsai, Electron. Lett. 30, 1793 (1994)
    [48] Y. C. Lin et al, IEEE Photonics Technol. Lett. 14, 1668 (2002)
    [49] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen and S. P. DenBaars, Appl. Phys. Lett. 74, 3930 (1999)
    [50] S. R. Jeon, Y. H. Song, H. J. Jang, G. M. Yang, S. W. Hwang and S. J. Son, Appl. Phys. Lett. 78, 3265 (2001)
    [51] Y. Chen, D. M. Bagnal, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu and T. Yao, J. Appl. Phys. 84, 3921 (1998)
    [52] D. C. Look, Mater. Sci. Eng. B 80, 383 (2001)
    [53] R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964)
    [54] P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johoson, R. Sakally, N. Morris, J. Pham, R. R. He and H. J. Choi, Adv. Funct. Mater. 12, 323 (2002)
    [55] C. X. Xu, X. W. Sun, B. J. Chen, C. Q. Sum, B. K. Tay and S. X. Li, Chem. Phys. Lett. 20, 1319 (2003)
    [56] Y. B. Li, T. Bando, T. Sato and K. Kurashima, Appl. Phys. Lett. 81, 144 (2002)
    [57] B. D. Tao, Y. F. Chan and N. Wang, Appl. Phys. Lett. 81, 757 (2002)
    [58] M. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang, Adv. Mater. (Weinheim, Ger.) 13, 113 (2001)
    [59] X. Y. Kong and Z. L. Wang, Nano Lett. 3, 1625 (2003)
    [60] L. Vayssieres, Adv. Mater. (Weinheim, Ger.) 15, 464 (2003)
    [61] M. S. Gudiksen, J. F. Wang and C. M. Lieber, J. Phys. Chem. B, 105, 4062 (2001)
    [62] S. K. Sharma, J. Narayan, J. F. Muth, C. W. Teng, C. Jin and A. Kvit, Appl. Phys. Lett. 75, 3327 (1999)
    [63] T. Minemoto, T. Negami, S. Nishiwaki, H. Takakura and Y. Hamakawa, Thin Solid Films 173, 372 (2000)
    [64] D. C. Oh, T. Suzuki, J. J. Kim, H. Makino, T. Hanada, T. Yao and H. J. Ko Appl. Phys. Lett. 87, 162104 (2005)
    [65] W. I. Park, W. I. Yi and J. W. Kim, Appl. Phys. Lett. 82, 4358 (2003)
    [66] W. I. Park, D. H. Kim, S. W. Jung and G. C. Yia, Appl. Phys. Lett. 80, 4232 (2004)
    [67] Guozhen Shen, P. C. Chen, Koungmin Ryu and Chongwu Zhou, J. Mater. Chem. 19,828 (2009)
    [68] J. K. Shue, Y. S. Lu, M. L. Lee, W. C. Lai, C. J. Kuo and C. J. Tun, Appl. Phys. Lett. 90, 263511 (2007)
    [69] C. T. Lee, H. Y. Lee and H. W. Chen, IEEE Electron Device Lett. 24, 54 (2003)
    [70] C. K. Wang, T. K. Ko, C. S. Chang, S. J. Chang, Y. K. Su, T. C. Wen, C. H. Kuo and Y. Z. Chiou, IEEE Photon. Technol. Lett. 17, 2161 (2005)
    [71] J. C. Zolper, D. J. Rieger, A. G. Baca, S. J. Pearton, J. W. Lee and R. A. Stall, Appl. Phys. Lett. 69, 538 (1996)
    [72] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J. Diaz and M. Razeghi, Appl. Phys. Lett. 74, 762 (1999)
    [73] A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D. Kuksenkov and H. Temkin, Appl. Phys. Lett. 71, 762 (1999)
    [74] G. Parish, S. Keller, P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, U. K. Mishira and E. J. Tarsa, Appl. Phys. Lett. 75, 247
    (1999)
    [75] V. Adivarahan, G. Simin, J. W. Yang, A. Lunev, M. A. Khan, N. Pala, M. Shur and R. Gaska, Appl. Phys. Lett. 77, 863 (2000)
    [76] S. J. Chang, M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, C. S. Chang, C. K. Kao, G. C. Chi and J. M. Tsai, IEEE Electron Device Lett. 24, 212 (2003)
    [77] J. Li, W. R. Donaldson and T. Y. Hsiang, IEEE Photon. Technol. Lett. 15, 1141 (2003)
    [78] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J. Diaz and M. Razeghi, Appl. Phys. Lett. 74, 762 (1999)
    [79] A. Chini, J. Wittich, S. Heikman, S. Keller, S. P. DenBaars and U. K. Mishra, IEEE Electron Device Lett. 25, 55 (2004)

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE