簡易檢索 / 詳目顯示

研究生: 廖洧琳
Liao, Wei-Lin
論文名稱: 利用適合度技術挑選虛擬樣本以提升小樣本成本預測
Using Goodness-of-fit Techniques to Select Virtual Samples to Improve Small Data of Cost Prediction
指導教授: 利德江
Li, Der-Chiang
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系碩士在職專班
Department of Industrial and Information Management (on the job class)
論文出版年: 2015
畢業學年度: 104
語文別: 英文
論文頁數: 69
中文關鍵詞: 成本預測小樣本最大P值Kolmogorov-Smirnov檢定
外文關鍵詞: Cost prediction, small data, Maximal P-value, Kolmogorov–Smirnov test
相關次數: 點閱:105下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在競爭激烈的市場下,企業為求科技創新與經濟發展,實施產業轉型(Industrial transformation)策略,改變其產業結構與規模,提升產業競爭力與滿足顧客需求。在產品開發過程中,受限時間與成本壓力下,通常在未取得足夠數量的樣本資料量進行成本預測。如何在市場競爭與品質提升的環境下,從有限資料建構預測模型進行成本預測為企業管理重要的標的。樣本資料量不足的問題存在實務應用,如何從有少數樣本中,開發有意義的資訊是小樣本學習的研究議題。許多研究發現,小樣本研究為解決製造系統預測問題與克服資料量不足的學習效能,以虛擬樣本產生法增加樣本量,透過小樣本數據集增加樣本資料量,提升預測學習的準確性。本研究結合兩參數韋伯分佈與最大P值(Maximal P-value)決定分佈參數,生成虛擬樣本增加資料量,藉由Kolmogorov-Smirnov檢定過濾與篩選干擾因子,將訓練樣本資料匯入到預測學習工具內,比較在不同方法下預測的準確程度。本研究以台灣印刷電路板汽車板產品之小樣本資料為實驗案例,實驗結果顯示,本研究方法較原始資料之預測誤差有顯著改善,與最大P值相比有較佳的預測效果。

    After the transition of consumer demand in the market, in order to create the technology and develop the finance, corporations adopt industrial transformation strategy to make an alteration of the corporation structure and scale and improve the competition and satisfy customer needs. Under stress of time and cost, the cost prediction in the product development process is often being conducted without acquiring sufficient sample data. The method of constructing prediction model to perform cost prediction analysis from limited data in the competitive and qualitative environment has become an important goal for corporation management. For the issue of insufficient sample data in the practice and application, the matter of how to develop the meaningful information from few samples is the research topic of small data set learning. Many studies noted that in order to address the predict issues of production system and break through the learning efficiency when data is inadequate, small data research increase the sample amount by virtual sample generation method to increase the sample data through small data sets and enhance the accuracy of prediction learning. The study adopted methods of two parameters Weibull distribution and Maximal P-value approach to generate virtual sample to increase data. The confounding factors were filtered and screened by Kolmogorov–Smirnov test and imported the training sample data into the prediction learning instruction to compare the accuracy of prediction in different methods. The study adopted small data sets of automotive printed circuit board in Taiwan as experiment case. The result indicated the method conducted in the study had a significant improvement on the prediction error than one in original data, and it received better effect of prediction comparing to maximum p-value.

    摘要 I ABSTRACT II 誌謝 III CONTENTS IV LIST OF TABLES VI LIST OF FIGURES VII 1. INTRODUCTION 1 1.1 Research Background 1 1.2 Research Motivation 3 1.3 Research Purposes 4 1.4 Research Structure 6 2. LITERATURE REVIEW 8 2.1 The Cost of Quality 8 2.1.1 The Definition and Function of Cost of Quality 8 2.1.2 The Classification of Cost of Quality 10 2.1.3 The Relations of Cost of Quality 11 2.2 Small Data Learning 11 2.3 Virtual Sample Generation Method 13 2.3.1 The Mega Trend Diffusion Method 14 2.3.2 The Statistical Virtual Sample Generation Method 17 2.4 The Prediction Method 18 2.4.1 Support Vector Machine 18 2.4.2 Back Propagation Neural Network 20 2.5 Summary 22 3. METHODOLOGY 23 3.1 The Scope of Proposed Data 23 3.2 The Application of Proposed Method 24 3.2.1 The Weibull Distribution 25 3.2.2 The Maximal P-Value Method 26 3.3 The Scheme for Virtual Sample Generation 27 3.3.1 The Generation of Weibull Virtual Samples 27 3.3.2 The Procedure of Representative Test 29 3.3.3 The Scheme for Removing Noise Factors 30 3.4 The Prediction Model 31 3.4.1 Support Vector Regression 32 3.4.2 Back Propagation Neural Network 34 3.5 The Detailed Steps of the Proposed Method 36 4. EXPERIMENTS 38 4.1 The Experimental Data Sets 38 4.2 The Experimental Design 44 4.3 The Experimental Results 47 4.4 Summary 60 5. CONCLUSIONS AND SUGGESTIONS 62 5.1 Conclusions 62 5.2 Suggestions 64 REFERENCES 65

    Burns, C. (1976). Quality costing used as a tool for cost reduction if the machine-tool industry. Quality Assurance, 2(1), 25-32.
    Chua, R. C. H., & DeFeo, J. A. (2006). Juran's quality planning and analysis: for enterprise quality: Tata McGraw-Hill Education.
    Cook, D. F., & Shannon, R. E. (1991). A sensitivity analysis of a back-propagation neural network for manufacturing process parameters. Journal of Intelligent Manufacturing, 2(3), 155-163.
    Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
    Dale, B. G., & Plunkett, J. J. (1999). Quality costing: Gower Publishing, Ltd.
    Deng, S., & Yeh, T.-H. (2011). Using least squares support vector machines for the airframe structures manufacturing cost estimation. International Journal of Production Economics, 131(2), 701-708.
    Feigenbaum, A. V. (1961). Total quality control: engineering and management: the technical and managerial field for improving product quality, including its reliability, and for reducing operating costs and losses: McGraw-Hill New York.
    Frey, J. (2014). Bootstrap confidence bands for the CDF using ranked-set sampling. Journal of the Korean Statistical Society, 43(3), 453-461.
    Gail, M., & Gastwirth, J. (1978). A scale-free goodness-of-fit test for the exponential distribution based on the Gini statistic. Journal of the Royal Statistical Society. Series B (Methodological), 350-357.
    Huang, C., & Moraga, C. (2004). A diffusion-neural-network for learning from small samples. International Journal of Approximate Reasoning, 35(2), 137-161.
    Judge, G. G., Hill, R. C., Griffiths, W., Lutkepohl, H., & Lee, T.-C. (1988). Introduction to the Theory and Practice of Econometrics.
    Juran, J. M., & De Feo, J. A. (2010). Juran's quality handbook: the complete guide to performance excellence: McGraw Hill.
    Khan, N. M., Ksantini, R., Ahmad, I. S., & Boufama, B. (2012). A novel SVM and NDA model for classification with an application to face recognition. Pattern Recognition, 45(1), 66-79.
    Li, D.-C., Chang, C.-C., Liu, C.-W., & Chen, W.-C. (2011). A new approach for manufacturing forecast problems with insufficient data: the case of TFT–LCDs. Journal of Intelligent Manufacturing, 24(2), 225-233. doi: 10.1007/s10845-011-0577-6
    Li, D.-C., Chen, L.-S., & Lin, Y.-S. (2003). Using functional virtual population as assistance to learn scheduling knowledge in dynamic manufacturing environments. International Journal of Production Research, 41(17), 4011-4024.
    Li, D.-C., Chen, W.-C., Liu, C.-W., Chang, C.-J., & Chen, C.-C. (2012). Determining manufacturing parameters to suppress system variance using linear and non-linear models. Expert Systems with Applications, 39(4), 4020-4025.
    Li, D.-C., Fang, Y.-H., Liu, C.-W., & Juang, C.-j. (2010). Using past manufacturing experience to assist building the yield forecast model for new manufacturing processes. Journal of Intelligent Manufacturing, 23(3), 857-868. doi: 10.1007/s10845-010-0442-z
    Li, D.-C., & Lin, L.-S. (2013). A new approach to assess product lifetime performance for small data sets. European Journal of Operational Research, 230(2), 290-298.
    Li, D.-C., Lin, L.-S., & Peng, L.-J. (2014). Improving learning accuracy by using synthetic samples for small datasets with non-linear attribute dependency. Decision Support Systems, 59, 286-295. doi: 10.1016/j.dss.2013.12.007
    Li, D.-C., & Lin, Y.-S. (2006). Using virtual sample generation to build up management knowledge in the early manufacturing stages. European Journal of Operational Research, 175(1), 413-434.
    Li, D.-C., & Lin, Y.-S. (2008). Learning management knowledge for manufacturing systems in the early stages using time series data. European Journal of Operational Research, 184(1), 169-184.
    Li, D.-C., & Liu, C.-W. (2009). A neural network weight determination model designed uniquely for small data set learning. Expert Systems with Applications, 36(6), 9853-9858.
    Li, D.-C., & Liu, C.-W. (2010). A class possibility based kernel to increase classification accuracy for small data sets using support vector machines. Expert Systems with Applications, 37(4), 3104-3110.
    Li, D.-C., Tsai, T.-I., & Shi, S. (2009). A prediction of the dielectric constant of multi-layer ceramic capacitors using the mega-trend-diffusion technique in powder pilot runs: case study. International Journal of Production Research, 47(1), 51-69.
    Li, D.-C., Wu, C.-S., Tsai, T.-I., & Chang, F. M. (2006). Using mega-fuzzification and data trend estimation in small data set learning for early FMS scheduling knowledge. Computers & Operations Research, 33(6), 1857-1869.
    Li, D.-C., Wu, C.-S., Tsai, T.-I., & Lina, Y.-S. (2007). Using mega-trend-diffusion and artificial samples in small data set learning for early flexible manufacturing system scheduling knowledge. Computers & Operations Research, 34(4), 966-982. doi: 10.1016/j.cor.2005.05.019
    Littell, R. C., Mc Clave, J. T., & Offen, W. W. (1979). Goodness-of-fit tests for the two parameter Weibull distribution. Communications in Statistics-Simulation and Computation, 8(3), 257-269.
    Liu, H., Gopalkrishnan, V., Quynh, K. T. N., & Ng, W.-K. (2009). Regression models for estimating product life cycle cost. Journal of Intelligent Manufacturing, 20(4), 401-408.
    Masser, W. (1957). The quality manager and quality costs. Industrial quality control, 14(6), 5-8.
    Meignen, S., & Meignen, H. (2006). On the modeling of small sample distributions with generalized Gaussian density in a maximum likelihood framework. Image Processing, IEEE Transactions, 15(6), 1647-1652.
    Moyer, D., & Gilmore, H. (1979). Product conformance in the steel foundry jobbing shop. Quality Progress, 12(5), 17-19.
    Nelson, W. B. (2005). Applied life data analysis. New York: John Wiley & Sons.
    Niyogi, P., Girosi, F., & Poggio, T. (1998). Incorporating prior information in machine learning by creating virtual examples. Proceedings of the IEEE, 86(11), 2196-2209.
    Romeu, J. L. (2003). Kolmogorov-simirnov: A goodness of fit test for small samples. START: Selected Topics in Assurance Related Technologies, 10(6).
    Verlinden, B., Duflou, J., Collin, P., & Cattrysse, D. (2008). Cost estimation for sheet metal parts using multiple regression and artificial neural networks: A case study. International Journal of Production Economics, 111(2), 484-492.
    Verrill, S. P., Evans, J. W., Kretschmann, D. E., & Hatfield, C. A. (2012). Small Sample Properties of Asymptotically Efficient Estimators of the Parameters of a Bivariate Gaussian–Weibull Distribution.
    Wei, Z., Yang, F., Luo, L., & Lin, S. (2013). The Uncertainty of Estimated Lognormal and Weibull Parameters for Test Data with Small Sample Size: SAE Technical Paper.
    Weibull, W. (1951). Wide applicability. Journal of applied mechanics.
    Wheelwright, S. C., & Hayes, R. H. (1985). Competing through manufacturing. Harvard Business Review, 63(1), 99-109.
    Yang, T., & Kecman, V. (2009). Adaptive local hyperplane algorithm for learning small medical data sets. Expert Systems, 26(4), 355-359.
    Yazici, B., & Yolacan, S. (2007). A comparison of various tests of normality. Journal of Statistical Computation and Simulation, 77(2), 175-183.
    Yeh, C.-Y., Huang, C.-W., & Lee, S.-J. (2011). A multiple-kernel support vector regression approach for stock market price forecasting. Expert Systems with Applications, 38(3), 2177-2186.
    Yin, F., Mao, H., Hua, L., Guo, W., & Shu, M. (2011). Back Propagation neural network modeling for warpage prediction and optimization of plastic products during injection molding. Materials & design, 32(4), 1844-1850.
    Zhang, L., Xie, M., & Tang, L. C. (2007). A study of two estimation approaches for parameters of Weibull distribution based on WPP. Reliability Engineering & System Safety, 92(3), 360-368.

    無法下載圖示 校內:2025-12-22公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE