簡易檢索 / 詳目顯示

研究生: 楊善茹
Yang, Shan-Ju
論文名稱: 數位孿生觀點之標準化三維建物資料設計
A Digital Twins Perspective Towards the Design of Standardized 3D Building Data
指導教授: 洪榮宏
Hong, Jung-Hong
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 217
中文關鍵詞: 數位孿生多尺度建物架構設計三維地理資訊LOD
外文關鍵詞: Digital Twin, Standardization, 3D GIS, LOD
相關次數: 點閱:147下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著物聯網技術的發達,數位孿生成為全球十大科技趨勢之一,促使世界各國積極以發展數位孿生與智慧城市為城市數位發展與循證治理之方針。三維地理資訊之發展被視為是城市數位孿生推動之重要基礎,利用增加垂直維度之考量,發展更為擬真之模擬、展示與應用,並在有效利用地理資訊整合、分析與展示空間資料與屬性資料之特性後,提升跨域應用之互操作性,符合數位孿生之多來源、多尺度、多物理之概念。然而在結合大量時空資料時,缺乏一致性規範與標準卻也因各領域資料欠缺規格之共識而大幅增加資料管理、流通、應用之難度,降低數位孿生跨領域協作之成效。三維建物資料為跨域之高度共同應用資料,但目前在實務上仍以視覺展示為主,主因為缺乏納入多來源測繪技術考量之多尺度建物圖徵資料規格,因此無法發展有效關聯及提升互操作性之運作機制。目前國際上以城市地理標記語言(City Geographic Markup Language,簡稱CityGML)所規範之LOD(Level of Detail)為尺度分級之依據,同一描述對象可基於多重表示(Multiple representation)之概念而具有不同之幾何表示,但目前LOD之規範過於彈性,缺乏可共識推行之建物空間單元規格與架構,數位孿生應用環境將面對大量基於不同觀點而建立之三維圖資,還須考量後續相互關聯與整合之課題。
    基於建物資料為數位孿生之重要基礎資料,且廣為各領域所引用或加值推廣,本研究聚焦於多等級之觀點,結合語意及測量技術,探討具有共識之三維建物規格與架構,以形成數位孿生應用環境之共同基礎資料。本研究首先基於文獻回顧,釐清數位孿生應用之需求,由資料面評估可因應跨尺度與多來源特性之標準化描述架構,藉由分析單一空間單元之共同特性與基本定義,結合多尺度概念與六項尺度設計因子,建立多尺度空間單元之核心架構。基於結合國內跨域需求之目標,本研究以建築領域常用之詞彙、法規為切入點,將其內容規定納入模式化之設計策略,規劃涵蓋尺度、語意及識別性考量之物件化描述架構,基礎於CityGML核心架構與LOD規格,將法規特性與規定融入於屬性設計中,並延伸探討不同尺度三維建物規格之設計,利用描述架構擴充模組(Application Domain Extension,簡稱 ADE)針對國內特定之語意空間單元彈性擴充,使整體多尺度空間單元更符合國內之應用需求。此外,本研究也將多來源建物資料與測繪技術納入規格設計考量,有效整合既有之異質性資料,提出兼具多尺度與多來源資料之明確三維建物規格。最終基礎於多尺度三維建物架構,探討各尺度建物於應用面之適用場合與限制,以強化國家基礎圖資跨域應用之成效。基於本研究所提出之多尺度建物空間單元規格為符合我國現行法規與測量技術之具體成果,在語意上可達到跨域溝通與共享之目標,並有助於建物管理業務之推動,標準化之成果可提供數位孿生基礎資料應用環境之發展,為多來源及多尺度建物資料整合與流通之橋梁,確保跨域使用者在數位孿生環境中更容易獲得與應用跨單位之資料,以奠定數位孿生加值應用發展之基礎。

    In recent years, the rapid advance of Internet of Things technology has driven countries worldwide to embrace digital twins and smart cities as essential principles for urban digital revolution. Among the key elements facilitating urban digital twins is 3D geographic information, which plays a pivotal role in their promotion. To enhance cross-domain application interoperability, vertical dimensions are increased, and geographic information is effectively integrated, analyzed, and displayed. This approach aligns more consistently with the principles of multi-source, multi-scale, and multi-physics digital twins. However, the integration of a vast amount of spatiotemporal data faces challenges due to the lack of consensus agreement on data specifications across related domains. As a result, data management and exchange become considerably more difficult, which tremendously reduce the effectiveness of cross-domain collaboration for digital twins. Although 3D building data is widely used, its applications are often restricted to visualization. The absence of comprehensive building data specifications, which incorporate considerations of multiple surveying and mapping technologies, hampers correct integration and the interoperability operation mechanism.
    To tackle these challenges, this research focuses on designing the primitive set of space units with semantics for buildings by thoroughly examining building laws and specifications in Taiwan. The research extensively analyzes the semantics, attributes, feature complexity, dimensionality, texture, and relationships of each space unit with other types of space units. This research integrates the CityGML core module and LOD specification into the building framework based on the semantic space units of building laws and regulations. Furthermore, the framework ensures flexibility beyond the core module by developing Application Domain Extension (ADE). Formal definitions of the 3D geometric representation, including LODs and thematic properties, are revised based on surveying techniques and different source data. The integrated common geospatial reference framework not only facilitates the visualization of 3D buildings, but also enables effective management and selection of building information in compliance with government legal requirements and chosen applications. By proposing a reliable and consistent reference for digital twin development, this research significantly enhances data interconnection between multi-source and supports the development of 3D analysis and applications. After considering various aspects of meaningful space unit descriptions for buildings and developing an enabling mechanism for 3D application development, the framework ensures seamless and interoperable integration and flexible expansion of GIS-based digital twins.

    摘要 I 誌謝 XI 目錄 XIII 圖目錄 XVI 表目錄 XX 第一章 緒論 1 1.1 研究背景 1 1.2 研究目標 4 1.3 研究流程 5 1.4 論文架構 7 1.5 研究限制 8 第二章 文獻回顧 9 2.1 數位孿生之定義、應用與現況 9 2.1.1 數位孿生之歷史 9 2.1.2 數位孿生之定義及概念 10 2.1.3 數位孿生應用 15 2.1.4 數位孿生之現況 24 2.1.5小結 26 2.2 多尺度概念轉變 26 2.2.1 紙本地圖 27 2.2.2 地理資訊系統 28 2.2.3 多重表示資料庫 29 2.2.4 小結 34 2.3 三維空間資料標準化 35 2.3.1 三維空間資料基礎建設 35 2.3.2 標準化觀點 37 2.3.3 三維資料標準 39 2.3.4 空間資料基礎建設案例 43 2.3.5 小結 49 2.4 空間資料之跨領域協作 50 2.4.1 空間資料跨域協作案例 50 2.4.2 跨域協作問題 57 2.4.3 小結 59 第三章 多尺度空間單元分析與設計策略 61 3.1 空間單元特性分析 62 3.1.1 空間單元 62 3.1.2 空間資料模型與位置 63 3.1.3 語意與主題屬性 66 3.1.4 空間關係 67 3.1.5 階層性 68 3.1.6 時間性 69 3.1.7 識別性 70 3.1.8 資料品質 71 3.1.9 法規 73 3.2 多尺度概念(LOD) 74 3.2.1 城市地理標記語言(CityGML)LOD概念 74 3.2.2 實體物件 83 3.2.3 圖徵細緻度 84 3.2.4 幾何維度 85 3.2.5 紋理 85 3.2.6 語意 86 3.2.7 屬性 86 3.3 建築相關領域空間單元技術用語、法規分析 87 3.3.1 建築領域技術用語與規範 87 3.3.2 建築語意空間單元納入尺度考量 93 3.3.3 小結 102 第四章 多尺度空間單元描述架構設計 104 4.1 多來源之語意空間單元分析 105 4.1.1 多來源三維建物規格分析 105 4.1.2 法規面與資料面之整合 108 4.2 多尺度空間單元整體架構 119 4.2.1 單一尺度空間單元規格設計 119 4.2.2 多尺度空間單元共同規定 127 4.2.3 多尺度空間單元識別碼與主題屬性設計 131 4.2.4 跨類別空間單元之空間關係 141 4.2.5 跨尺度空間單元之差異比較 146 4.2.6 小結 149 第五章 多尺度建物空間單元架構應用與分析 150 5.1 多尺度空間單元資料處理與建置 150 5.1.1 實驗區與多來源建物資料簡介 150 5.1.2 多尺度空間單元建物資料處理 151 5.2 多尺度空間單元整合式系統架構 166 5.2.1 系統開發環境 166 5.2.2 多尺度圖徵資料庫建立 169 5.3 應用案例與分析 176 5.3.1 單一尺度空間單元對應多來源資料 176 5.3.2 跨尺度空間單元對應多來源資料 177 5.3.3 適用場合與限制 179 5.3.4 跨域資料關聯 187 第六章 結論與未來展望 195 6.1 結論 195 6.2 未來展望 197 參考文獻 199

    AL KALBANI, K. A., Rahman, A. A., & Malaysia-Talal, A. (2018). Implementing 3d Spatial Data Infrastructure For Oman-Issues And Challenges.
    Alizadehashrafi, B. (2019). Introducing a Customized Framework for 3D Spatial Data Infrastructure of Iran Based on OGC Standards. Earth Observation and Geomatics Engineering, 3(1), 92-101.
    Anders, K., & Bobrich, J. (2004). MRDB approach for automatic incremental update. Paper presented at the ICA workshop on generalisation and multiple representation.
    Angjeliu, G., Coronelli, D., & Cardani, G. (2020). Development of the simulation model for Digital Twin applications in historical masonry buildings: The integration between numerical and experimental reality. Computers & Structures, 238, 106282.
    Arslan, M., Riaz, Z., & Munawar, S. (2017). Building information modeling (BIM) enabled facilities management using hadoop architecture. Paper presented at the 2017 Portland International Conference on Management of Engineering and Technology (PICMET).
    Bandibas, J., & Takarada, S. (2019). Geoinformation Sharing System for East and Southeast Asia Using SDI, OGC Web Services and FOSS. International Journal of Geosciences, 10(02), 209.
    Barricelli, B. R., Casiraghi, E., & Fogli, D. (2019). A survey on digital twin: Definitions, characteristics, applications, and design implications. Ieee Access, 7, 167653-167671.
    Barricelli, B. R., Casiraghi, E., Gliozzo, J., Petrini, A., & Valtolina, S. (2020). Human digital twin for fitness management. Ieee Access, 8, 26637-26664.
    Bartlett, D., Longhorn, R., & Garriga, M. (2004). Marine and Coastal Data Infrastructures: a missing piece in the SDI puzzle. Paper presented at the 7th Global Spatial Data Infrastructure conference, Bangalore, India.
    Batty, M. (2018). Digital twins. Environment and Planning B: Urban Analytics and City Science, 45(5), 817-820. doi:10.1177/2399808318796416
    Bedard, Y., & Bernier, E. (2002). Supporting multiple representations with spatial view management and the concept of" VUEL. Paper presented at the Joint Workshop on Multi-Scale Representations of Spatial Data, ISPRS WG IV/3, ICA Commission on Map Generalisation.
    Biesinger, F., & Weyrich, M. (2019). The facets of digital twins in production and the automotive industry. Paper presented at the 2019 23rd international conference on mechatronics technology (ICMT).
    Biljecki, F. (2017). Level of detail in 3D city models.
    Biljecki, F., Ledoux, H., & Stoter, J. (2016). An improved LOD specification for 3D building models. Computers, Environment and Urban Systems, 59, 25-37.
    Biljecki, F., Lim, J., Crawford, J., Moraru, D., Tauscher, H., Konde, A., Adouane, K., Lawrence, S., Janssen, P., & Stouffs, R. (2021). Extending CityGML for IFC-sourced 3D city models. Automation in Construction, 121, 103440.
    Bolton, A., Butler, L., Dabson, I., Enzer, M., Evans, M., Fenemore, T., . . . Luck, A. (2018). Gemini principles.
    Bolton, A., et al. (2018). "Gemini principles."
    Boscoe, F. (2008). The science and art of geocoding: Tips for improving match rates and handling unmatched cases in analysis. Geocoding health data: The use of geographic codes in cancer prevention and control, research and practice, 95-110.
    Botín-Sanabria, D. M., Mihaita, A.-S., Peimbert-García, R. E., Ramírez-Moreno, M. A., Ramírez-Mendoza, R. A., & Lozoya-Santos, J. d. J. (2022). Digital twin technology challenges and applications: A comprehensive review. Remote Sensing, 14(6), 1335.
    Botkina, D., Hedlind, M., Olsson, B., Henser, J., & Lundholm, T. (2018). Digital twin of a cutting tool. Procedia Cirp, 72, 215-218.
    Boulos, M. N. K. (2004). Towards evidence-based, GIS-driven national spatial health information infrastructure and surveillance services in the United Kingdom. International Journal of Health Geographics, 3, 1-50.
    Brenner, B., & Hummel, V. (2017). Digital twin as enabler for an innovative digital shopfloor management system in the ESB Logistics Learning Factory at Reutlingen-University. Procedia Manufacturing, 9, 198-205.
    Brewer, C. A., & Buttenfield, B. P. (2007). Framing guidelines for multi-scale map design using databases at multiple resolutions. Cartography and Geographic Information Science, 34(1), 3-15.
    Burrough, P. A., McDonnell, R. A., & Lloyd, C. D. (2015). Principles of geographical information systems: Oxford university press.
    Buttenfield, B. P. (1993). Research Initiative 3: Multiple representations, closing report. NCGIA (National Center for Geographic Information and Analysis).
    Cai, Y., Starly, B., Cohen, P., & Lee, Y.-S. (2017). Sensor data and information fusion to construct digital-twins virtual machine tools for cyber-physical manufacturing. Procedia Manufacturing, 10, 1031-1042.
    Carral, D., Scheider, S., Janowicz, K., Vardeman, C., Krisnadhi, A. A., & Hitzler, P. (2013). An ontology design pattern for cartographic map scaling. Paper presented at the Extended Semantic Web Conference.
    Carvalho, A., Melo, P., Oliveira, M. A., & Barros, R. (2020). The 4-corner model as a synchromodal and digital twin enabler in the transportation sector. Paper presented at the 2020 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC).
    Chen, W., Chen, K., Cheng, J. C. P., Wang, Q., & Gan, V. J. L. (2018). BIM-based framework for automatic scheduling of facility maintenance work orders. Automation in Construction, 91, 15-30. doi:https://doi.org/10.1016/j.autcon.2018.03.007
    Cheng, J., Deng, Y., & Du, Q. (2013). Mapping between BIM models and 3D GIS city models of different levels of detail. Paper presented at the Proceedings of the 13th International Conference on Construction Applications of Virtual Reality.
    Cimino, C., Negri, E., & Fumagalli, L. (2019). Review of digital twin applications in manufacturing. Computers in Industry, 113, 103130.
    Clementini, E., Di Felice, P., & Van Oosterom, P. (1993). A small set of formal topological relationships suitable for end-user interaction. Paper presented at the International symposium on spatial databases.
    Committee, F. G. D. (2013). National Spatial Data Infrastructure Strategic Plan 2014–2016. Retrieved from
    Conejos Fuertes, P., Martínez Alzamora, F., Hervás Carot, M., & Alonso Campos, J. (2020). Building and exploiting a Digital Twin for the management of drinking water distribution networks. Urban Water Journal, 17(8), 704-713.
    Cooper, R. (2018). Urban Planning in 3D: How Creating a Digital Twin Leads to Smarter Cities. Retrieved from https://meetingoftheminds.org/urban-planning-3d-creating-digital-twin-leads-smarter-cities-25212
    Council, N. R., & Committee, M. S. (1993). Toward a coordinated spatial data infrastructure for the nation: National Academies Press.
    Crompvoets, J., & Bregt, A. (2003). World status of national spatial data clearinghouses. Urisa Journal, 15(2), 15-22.
    Das, A., Cetl, V., & Centre, E. C. J. R. (2021). Study on Opportunities and Challenges of Collaboration for Geospatial Services: Publications Office of the European Union.
    Daum, S., & Borrmann, A. (2014). Processing of topological BIM queries using boundary representation based methods. Advanced Engineering Informatics, 28(4), 272-286.
    Dembski, F., Wossner, U., Letzgus, M., Ruddat, M., & Yamu, C. (2020). Urban Digital Twins for Smart Cities and Citizens: The Case Study of Herrenberg, Germany. Sustainability, 12(6). <Go to ISI>://WOS:000523751400154
    Deren, L., Wenbo, Y., & Zhenfeng, S. (2021). Smart city based on digital twins. Computational Urban Science, 1(1), 1-11.
    Devogele, T., Trevisan, J., & Raynal, L. (1996). Building a multi-scale database with scale-transition relationships. International symposium on spatial data handling,
    Eboy, O. V. (2017). Tourism mapping: an overview of cartography and the use of GIS. BIMP-EAGA Journal for Sustainable Tourism Development, 6(1), 61-67.
    Economist, T. (2021). Modern Manufacturing’s Triple Play: Digital Twins, Analytics and the Internet of Things, 2022(12 February). Retrieved from Available online: https://expectexceptional.economist.com/digital-twins-analytics-internet-of-things.html
    Egenhofer, M. (1990). A mathematical framework for the definition of topological relations. Paper presented at the Proc. the fourth international symposium on spatial data handing.
    Egenhofer, M. J., & Herring, J. (1990). Categorizing binary topological relations between regions, lines, and points in geographic databases. The, 9(94-1), 76.
    Ehlers, M. (2008). Geoinformatics and digital earth initiatives: a German perspective. International journal of digital earth, 1(1), 17-30.
    El Jazzar, M., Piskernik, M., & Nassereddine, H. (2020). Digital twin in construction: An empirical analysis. Paper presented at the EG-ICE 2020 Workshop on Intelligent Computing in Engineering, Proceedings.
    Enders, M. R., & Hoßbach, N. (2019). Dimensions of digital twin applications-a literature review.
    Feng, H., Chen, Q., & de Soto, B. G. (2021). Application of digital twin technologies in construction: an overview of opportunities and challenges. Paper presented at the ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction.
    Främling, K., Holmström, J., Ala-Risku, T., & Kärkkäinen, M. (2003). Product agents for handling information about physical objects. Report of Laboratory of information processing science series B, TKO-B, 153(03).
    Friis-Christensen, A., Skogan, D., Jensen, C. S., Skagestein, G., & Tryfona, N. (2002). Management of multiply represented geographic entities. Proceedings International Database Engineering and Applications Symposium,
    Fuller, A., Fan, Z., Day, C., & Barlow, C. (2020). Digital twin: Enabling technologies, challenges and open research. Ieee Access, 8, 108952-108971.
    Gabor, T., Belzner, L., Kiermeier, M., Beck, M. T., & Neitz, A. (2016). A simulation-based architecture for smart cyber-physical systems. Paper presented at the 2016 IEEE international conference on autonomic computing (ICAC).
    Gao, S., Mioc, D., Anton, F., Yi, X., & Coleman, D. J. (2008). Online GIS services for mapping and sharing disease information. International Journal of Health Geographics, 7, 1-12.
    Ghaith, M., Yosri, A., & El-Dakhakhni, W. (2022). Digital Twin: A City-Scale Flood Imitation Framework. Paper presented at the Canadian Society of Civil Engineering Annual Conference.
    Glaessgen, E., & Stargel, D. (2012). The digital twin paradigm for future NASA and US Air Force vehicles. 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference 20th AIAA/ASME/AHS adaptive structures conference 14th AIAA,
    Glover, J. (1996). Open GIS [TM]-Removing the barriers to a spatial data Infrastructure. AGI-CONFERENCE PROCEEDINGS-,
    Goodchild, M. F., & Proctor, J. (1997). Scale in a digital geographic world. Geographical and environmental modelling, 1, 5-24.
    Goodchild, M., & Quattrochi, D. (1997). Introduction: Scale, Multiscaling. Remote Sensing, and GIS. In Scale in remote sensing and GIS, 1-12.
    Granell, C., Fernández, Ó. B., & Díaz, L. (2014). Geospatial information infrastructures to address spatial needs in health: collaboration, challenges and opportunities. Future Generation Computer Systems, 31, 213-222.
    Grieves, M. (2014). Digital twin: manufacturing excellence through virtual factory replication. White paper, 1(2014), 1-7.
    Grieves, M., & Vickers, J. (2017). Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary perspectives on complex systems (pp. 85-113): Springer.
    Guidance on the 'Regulation on access to spatial data sets and services of the Member States by Community institutions and bodies under harmonised conditions'. (2013). European Commission Retrieved from https://inspire.ec.europa.eu/documents/Data_and_Service_Sharing/DSSGuidanceDocument_v5.0.pdf
    Gürsoy Sürmeneli, H., Koeva, M., & Alkan, M. (2022). The Application Domain Extension (ADE) 4D Cadastral Data Model and Its Application in Turkey. Land, 11(5), 634. Retrieved from https://www.mdpi.com/2073-445X/11/5/634
    Hamerlinck, J. D. (2020). The Geographic Information Science & Technology Body of Knowledge. U.S. National Spatial Data Infrastructure. https://doi.org/10.22224/gistbok/2020.2.2
    Hampe, M., Anders, K.-H., & Sester, M. (2003). MRDB applications for data revision and real-time generalisation. Proceedings of the 21st International Cartographic Conference,
    He, S. (2012). Production and Visualization of Levels of Detail for 3D City Models.
    Hedley, N., & Lochhead, I. (2020). Turning 3d Data Surveys of Intertidal Zones Into New Modes of 3d Visualization, Simulation and Spatial Interface Experiences. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 791-794.
    Hu, L., Fang, Z., Zhang, M., Jiang, L., & Yue, P. (2022). Facilitating Typhoon-Triggered Flood Disaster-Ready Information Delivery Using SDI Services Approach—A Case Study in Hainan. Remote Sensing, 14(8), 1832.
    Hu, Z.-Z., Tian, P.-L., Li, S.-W., & Zhang, J.-P. (2018). BIM-based integrated delivery technologies for intelligent MEP management in the operation and maintenance phase. Advances in Engineering Software, 115, 1-16. doi:https://doi.org/10.1016/j.advengsoft.2017.08.007
    Hunink, M. M., Weinstein, M. C., Wittenberg, E., Drummond, M. F., Pliskin, J. S., Wong, J. B., & Glasziou, P. P. (2014). Decision making in health and medicine: integrating evidence and values: Cambridge university press.
    Hurst, P., & Clough, P. (2013). Will we be lost without paper maps in the digital age? Journal of Information Science, 39(1), 48-60.
    Illert, A. (2001). Multi-Scale GIS: From Generalisation to Data Integration. Paper presented at the Proceedings of 20th International Cartographic Conference.in Hong Kong FIG2021,
    ISO/TC211. (2019). ISO19115-2: 2019. Geographic Information—Metadata—Part 2: Extensions for Acquisition and Processing. ISO/TC 211.
    Jebur, M. N., Ziaei, Z., Tehrany, M. S., & Shariff, A. R. M. (2013). A review of recent developments in national spatial data infrastructures (NSDI). International Journal of Engineering Research and Applications (IJERA), 3(4), 6-14.
    Jiang, F., Ma, L., Broyd, T., Chen, W., & Luo, H. (2022). Digital twin enabled sustainable urban road planning. Sustainable Cities and Society, 78, 103645.
    Jones, A., Blake, C., Davies, C., & Scanlon, E. (2004). Digital maps for learning: A review and prospects. Computers & Education, 43(1-2), 91-107.
    Jones, C. B., Kidner, D. B., Luo, L., Bundy, G. L., & Ware, J. M. (1996). Database design for a multi-scale spatial information system. International Journal of Geographical Information Systems, 10(8), 901-920.
    Jones, D., Snider, C., Nassehi, A., Yon, J., & Hicks, B. (2020). Characterising the Digital Twin: A systematic literature review. Cirp Journal of Manufacturing Science and Technology, 29, 36-52. doi:10.1016/j.cirpj.2020.02.002
    Jovanović, D., Milovanov, S., Ruskovski, I., Govedarica, M., Sladić, D., Radulović, A., & Pajić, V. (2020). Building virtual 3D city model for Smart Cities applications: A case study on campus area of the University of Novi Sad. Isprs International Journal of Geo-Information, 9(8), 476.
    Kaewunruen, S., & Xu, N. (2018). Digital twin for sustainability evaluation of railway station buildings. Frontiers in Built Environment, 4, 77.
    Kalantari, M., Olfat, H., & Rajabifard, A. (2010). Automatic spatial metadata enrichment: reducing metadata creation burden through spatial folksonomies. Paper presented at the Global Spatial Data Infrastructures 12 World Conference: Realising Spatially Enabled Societies.
    Kalogianni, E., van Oosterom, P., Dimopoulou, E., & Lemmen, C. (2020). 3D Land Administration: A Review and a Future Vision in the Context of the Spatial Development Lifecycle. Isprs International Journal of Geo-Information, 9(2), 107. Retrieved from https://www.mdpi.com/2220-9964/9/2/107
    Kang, T. W., & Hong, C. H. (2015). A study on software architecture for effective BIM/GIS-based facility management data integration. Automation in Construction, 54, 25-38. doi:https://doi.org/10.1016/j.autcon.2015.03.019
    Kapkaeva, N., Gurzhiy, A., Maydanova, S., & Levina, A. (2021). Digital platform for maritime port ecosystem: Port of Hamburg case. Transportation Research Procedia, 54, 909-917.
    Katalin, T., Clemens, P., Andreas, I., Michael, L., & Maria, N. D. L. (2012). A Conceptual Model for Developing Interoperability Specifications in Spatial Data Infrastructures.
    Khajavi, S. H., Motlagh, N. H., Jaribion, A., Werner, L. C., & Holmström, J. (2019). Digital twin: vision, benefits, boundaries, and creation for buildings. Ieee Access, 7, 147406-147419.
    Khantong, S., & Ahmad, M. N. (2020). An ontology for sharing and managing information in disaster response: In flood response usage scenarios. Journal on Data Semantics, 9, 39-52.
    Kim, K., Kim, Y., Park, J., Yoon, D., & Shin, S. (2022). Preliminary Literature Survey on LoD of Geographic Information. Paper presented at the 2022 13th International Conference on Information and Communication Technology Convergence (ICTC).
    Kin-nam YIU, Yuk-ming TAU, TONG, M.-k., & TSOI, a. C.-w. (2021). Development and Challenges of Spatial Data Infrastructure
    Ko, C.-H., Pan, N.-F., & Chiou, C.-C. (2013). Web-based radio frequency identification facility management systems. Structure and Infrastructure Engineering, 9(5), 465-480. doi:10.1080/15732479.2010.546804
    Kritzinger, W., Karner, M., Traar, G., Henjes, J., & Sihn, W. (2018). Digital Twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine, 51(11), 1016-1022.
    Kumar, S., & Jailia, M. (2018). Smart Cities with spatial data infrastructure and big data-a critical review. International Journal of Advanced Studies of Scientific Research, 3(11).
    Kutzner, T., Chaturvedi, K., & Kolbe, T. H. (2020). CityGML 3.0: New functions open up new applications. PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 88(1), 43-61.
    Laaki, H., Miche, Y., & Tammi, K. (2019). Prototyping a digital twin for real time remote control over mobile networks: Application of remote surgery. Ieee Access, 7, 20325-20336.
    Lam, N. S.-N. (2004). Fractals and scale in environmental assessment and monitoring. Scale and geographic inquiry: Nature, society, and method, 23-40.
    Laubenbacher, R., Sluka, J. P., & Glazier, J. A. (2021). Using digital twins in viral infection. Science, 371(6534), 1105-1106.
    Leitner, M., & Curtis, A. (2006). A first step towards a framework for presenting the location of confidential point data on maps—results of an empirical perceptual study. International Journal of Geographical Information Science, 20(7), 813-822.
    Lim, T. K., Rajabifard, A., Khoo, V., Sabri, S., & Chen, Y. (2021). The smart city in Singapore: How environmental and geospatial innovation lead to urban livability and environmental sustainability. In Smart Cities for Technological and Social Innovation (pp. 29-49): Elsevier.
    Lin, Y.-C., & Cheung, W.-F. (2020). Developing WSN/BIM-based environmental monitoring management system for parking garages in smart cities. Journal of Management in Engineering, 36(3), 04020012.
    Liu, J., Zhou, H., Tian, G., Liu, X., & Jing, X. (2019). Digital twin-based process reuse and evaluation approach for smart process planning. The International Journal of Advanced Manufacturing Technology, 100(5), 1619-1634.
    Liu, M., Fang, S., Dong, H., & Xu, C. (2021). Review of digital twin about concepts, technologies, and industrial applications. Journal of Manufacturing Systems, 58, 346-361.
    Liu, T., Zhao, D., & Pan, M. (2016). An approach to 3D model fusion in GIS systems and its application in a future ECDIS. Computers & Geosciences, 89, 12-20.
    Löwner, M.-O., Gröger, G., Benner, J., Biljecki, F., & Nagel, C. (2016). PROPOSAL FOR A NEW LOD AND MULTI-REPRESENTATION CONCEPT FOR CITYGML. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 4.
    Lu, Q., Parlikad, A. K., Woodall, P., Don Ranasinghe, G., Xie, X., Liang, Z., Konstantinou, E., Heaton, J., & Schooling, J. (2020). Developing a digital twin at building and city levels: Case study of West Cambridge campus. Journal of Management in Engineering, 36(3), 05020004.
    Lu, Y., & Xu, X. (2018). Resource virtualization: a core technology for developing cyber-physical production systems. Journal of Manufacturing Systems, 47, 128-140.
    Lydon, G. P., Caranovic, S., Hischier, I., & Schlueter, A. (2019). Coupled simulation of thermally active building systems to support a digital twin. Energy and Buildings, 202, 109298.
    Macauley, C. (2005). Australia and New Zealand ANZLIC Metadata Guidelines. In World Spatial Metadata Standards (pp. 201-218). Elsevier.
    Magno, R., De Filippis, T., Di Giuseppe, E., Pasqui, M., Rocchi, L., & Gozzini, B. (2018). Semi-automatic operational service for drought monitoring and forecasting in the Tuscany region. Geosciences, 8(2), 49.
    Major, P., Li, G., Hildre, H. P., & Zhang, H. (2021). The Use of a Data-Driven Digital Twin of a Smart City: A Case Study of Ålesund, Norway. IEEE Instrumentation & Measurement Magazine, 24(7), 39-49.
    Mansourian, A., Rajabifard, A., & Zoje, M. J. V. (2008). SDI Conceptual Modeling for Disaster Management.
    Mansourian, A., Rajabifard, A., Zoej, M. V., & Williamson, I. (2006). Using SDI and web-based system to facilitate disaster management. Computers & Geosciences, 32(3), 303-315.
    Marion, D., Guillaume, T., & Cécile, D. (2020). Designing multi-scale maps: lessons learned from existing practices. International Journal of Cartography, 6(1), 121-151 , year = 2020. https://doi.org/10.1080/23729333.2020.1717832
    Martinez-Velazquez, R., Gamez, R., & El Saddik, A. (2019). Cardio Twin: A Digital Twin of the human heart running on the edge. 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA),
    Masser, I. (2019). The future of spatial data infrastructures. In Geographic Information Systems to Spatial Data Infrastructure (pp. 227-252). CRC Press.
    Mathys, T., & Kamel Boulos, M. N. (2011). Geospatial resources for supporting data standards, guidance and best practice in health informatics. BMC Research Notes, 4(1), 1-18.
    Mc Master, R. B., & Shea, K. S. (1988). Cartographic generalization in a digital environment: a framework for implementation in a geographic information system. Scanning Electron Microsc Meet at, 240-249.
    McGranaghan, M. (2003). Geospatial data infrastructure: concepts, cases, and good practice. In: Taylor & Francis.
    McLean, D. (2019). Digital twins for a sustainable built environment. AEC magazine.
    Michel, F., & Steffen, D. (2010). Visualization for Climate Change Adaptation in SUDPLAN. EnviroInfo,
    Minghini, M., Cetl, V., Kotsev, A., Tomas, R., & Lutz, M. (2021). INSPIRE: The entry point to Europe’s big geospatial data infrastructure. In Handbook of Big Geospatial Data (pp. 619-641): Springer.
    Mitchell, W. J., & McCullough, M. (1995). Digital design media. John Wiley & Sons.
    Mohammadi, N., & Taylor, J. E. (2017). Smart city digital twins. 2017 IEEE Symposium Series on Computational Intelligence (SSCI), 1-5.
    Monmonier, M. S. (1984). Geographic information and cartography. Progress in Human Geography, 8(3), 381-391.
    Montello, D. (2001). Scale in geography In J Smelser N and Baltes PB (Eds.), International Encyclopedia of the Social & Behavioral Sciences (pp. 13501–13504). In: Oxford: Pergamon.[Google Scholar].
    Morehouse, S. (1995). GIS-based map compilation and generalization. GIS And Generalisation: Methodology And Practice(1), 21.
    Müller, H., & Würriehausen, F. (2012). A case study on local SDI implementation in Germany. Survey Review, 44(325), 124-133.
    Nebert, D. (2001). Developing Spatial Data Infrastructures: The SDI Cookbook.
    Negri, E., Fumagalli, L., & Macchi, M. (2017). A review of the roles of digital twin in CPS-based production systems. Procedia Manufacturing, 11, 939-948.
    Nguyen-Gia, T.-A., Dao, M.-S., & Mai-Van, C. (2017). A comparative survey of 3D GIS models. Paper presented at the 2017 4th NAFOSTED Conference on Information and Computer Science.
    NRF Virtual Singapore. (2020). Retrieved from https://www.nrf.gov.sg/programmes/virtual-singapore
    OGC. (2012). OGC City Geography Markup Language (CityGML) Encoding Standard. In.
    OGC. (2021). OGC City Geography Markup Language (CityGML) Part 1: Conceptual Model Standard. In.
    Opoku, D.-G. J., Perera, S., Osei-Kyei, R., & Rashidi, M. (2021). Digital twin application in the construction industry: A literature review. Journal of Building Engineering, 40, 102726.
    Ostensen, O. M., & Smits, P. C. (2002). ISO/TC211: Standardisation of geographic information and geo-informatics. IEEE International Geoscience and Remote Sensing Symposium,
    Panetta, K. (2017). Gartner’s top 10 strategic technology trends for 2017. Smarter With Gartner.
    Pasewaldt, S., Semmo, A., Trapp, M., & Döllner, J. (2012). Towards comprehensible digital 3D maps.
    Patrick, B. (2018). Meet Boston’s Digital Twin. Retrieved from https://www.esri.com/about/newsroom/blog/3d-gis-boston-digital-twin/
    Peng, Y., Lin, J.-R., Zhang, J.-P., & Hu, Z.-Z. (2017). A hybrid data mining approach on BIM-based building operation and maintenance. Building and Environment, 126, 483-495. doi:https://doi.org/10.1016/j.buildenv.2017.09.030
    Phanden, R. K., Sharma, P., & Dubey, A. (2021). A review on simulation in digital twin for aerospace, manufacturing and robotics. Materials today: proceedings, 38, 174-178.
    Piascik, B., Vickers, J., Lowry, D., Scotti, S., Stewart, J., & Calomino, A. (2012). Materials, structures, mechanical systems, and manufacturing roadmap. NASA TA, 12-12.
    Protocol, K. (1997). Kyoto protocol. UNFCCC Website. Available online: http://unfccc. int/kyoto_protocol/items/2830. php (accessed on 1 January 2011).
    Rajabifard, A., & Williamson, I. P. (2003). Anticipating the cultural aspects of sharing for SDI development.
    Rajesh, P., Manikandan, N., Ramshankar, C., Vishwanathan, T., & Sathishkumar, C. (2019). Digital twin of an automotive brake pad for predictive maintenance. Procedia Computer Science, 165, 18-24.
    Rodrigues, L., Gillott, M., Waldron, J. A., Cameron, L., Tubelo, R., Shipman, R. (2018). Community Energy Networks in the Making: Project SCENe, Nottingham. Paper presented at the 34th Passive and Low Energy Architecture Conference (PLEA 2018), Hong Kong, China.
    Rosen, R., Von Wichert, G., Lo, G., & Bettenhausen, K. D. (2015). About the importance of autonomy and digital twins for the future of manufacturing. IFAC-PapersOnLine, 48(3), 567-572.
    Ruohomäki, T., Airaksinen, E., Huuska, P., Kesäniemi, O., Martikka, M., & Suomisto, J. (2018). Smart city platform enabling digital twin. 2018 International Conference on Intelligent Systems (IS),
    Salim, M. J. (2017). 3D spatial information intended for SDI: a literature review, problem and evaluation. Journal of Geographic Information System, 9(05), 535.
    Sammartano, G., Avena, M., Cappellazzo, M., & Spanò, A. (2021). HYBRID GIS-BIM APPROACH FOR THE TORINO DIGITAL-TWIN: THE IMPLEMENTATION OF A FLOOR-LEVEL 3D CITY GEODATABASE. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences.
    Sarjakoski, T., Sarjakoski, L. T., Lehto, L., Sester, M., Illert, A., Nissen, F., Rystedt, B., & Ruotsalainen, R. (2002). Geospatial info-mobility services-a challenge for national mapping agencies. International Archives Of Photogrammetry Remote Sensing And Spatial Information Sciences, 34(4), 356-360.
    Schaffers, H., Ratti, C., & Komninos, N. (2012). Special Issue on Smart Applications for Smart Cities–New Approaches to Innovation: Guest Editors' Introduction. In (Vol. 7, pp. 2-6): Multidisciplinary Digital Publishing Institute.
    Schickler, W. (1997). A Virtual reality model of a major international airport. Automatic Extraction of Man-Made Objects from Aerial and Space Images (II),
    Schiewe, J., Krek, A., Peters, I., Sternberg, H., & Traub, K.-P. (2008). HCU research group “Digital City”: developing and evaluating tools for urban research. Digital earth summit on geoinformatics. Hamburg University, HafenCity.
    Schluse, M., & Rossmann, J. (2016). From simulation to experimentable digital twins: Simulation-based development and operation of complex technical systems. 2016 IEEE International Symposium on Systems Engineering (ISSE),
    Schrotter, G., & Hurzeler, C. (2020). The Digital Twin of the City of Zurich for Urban Planning. Pfg-Journal of Photogrammetry Remote Sensing and Geoinformation Science, 88(1), 99-112. <Go to ISI>://WOS:000511068200003
    Semeraro, C., Lezoche, M., Panetto, H., & Dassisti, M. (2021). Digital twin paradigm: A systematic literature review. Computers in Industry, 130, 103469.
    Sester, M., Sarjakoski, T., Harrie, L., Hampe, M., Koivula, T., Sarjakoski, T., Lehto, L., Elias, B., Nivala, A.-M., & Stigmar, H. (2004). Real-time generalisation and multiple representation in the GiMoDig mobile service.
    Shafto, M., Conroy, M., Doyle, R., Glaessgen, E., Kemp, C., LeMoigne, J., & Wang, L. (2012). Modeling, simulation, information technology & processing roadmap. National Aeronautics and Space Administration, 32(2012), 1-38.
    Shen, W., Hao, Q., & Xue, Y. (2012). A loosely coupled system integration approach for decision support in facility management and maintenance. Automation in Construction, 25, 41-48. doi:https://doi.org/10.1016/j.autcon.2012.04.003
    Shengli, W. (2021). Is human digital twin possible? Computer Methods and Programs in Biomedicine Update, 1, 100014.
    Sheppard, E., & McMaster, R. B. (2008). Scale and geographic inquiry: Nature, society, and method. John Wiley & Sons.
    Shubenkova, K., Valiev, A., Shepelev, V., Tsiulin, S., & Reinau, K. H. (2018). Possibility of digital twins technology for improving efficiency of the branded service system. Paper presented at the 2018 global smart industry conference (GloSIC).
    Siemens. (2021). Getting to Market Quickly. Retrieved from Available online: https://new.siemens.com/global/en/company/stories/industry/getting-to-market-quickly.html
    Singh, M., Fuenmayor, E., Hinchy, E. P., Qiao, Y., Murray, N., & Devine, D. (2021). Digital Twin: Origin to Future. Applied System Innovation, 4(2), 36. Retrieved from https://www.mdpi.com/2571-5577/4/2/36
    Singh, M., Srivastava, R., Fuenmayor, E., Kuts, V., Qiao, Y., Murray, N., & Devine, D. (2022). Applications of Digital Twin across Industries: A Review. Applied Sciences, 12(11), 5727. Retrieved from https://www.mdpi.com/2076-3417/12/11/5727
    Smith, C. D., & Mennis, J. (2020). Peer reviewed: incorporating geographic information science and technology in response to the COVID-19 pandemic. Preventing chronic disease, 17.
    Soon, K., & Khoo, V. (2017). CityGML modelling for Singapore 3d national mapping. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 42.
    Sorrentino, M., & Simonetta, M. (2013). Incentivising inter-municipal collaboration: the Lombard experience. Journal of Management & Governance, 17(4), 887-906.
    Spaccapietra, S., Parent, C., & Vangenot, C. (2000). GIS databases: From multiscale to multirepresentation. International Symposium on Abstraction, Reformulation, and Approximation,
    Spaccapietra, S., Vangenot, C., Parent, C., & Zimanyi, E. (1999). MurMur: a research agenda on multiple representations. Paper presented at the Proceedings 1999 International Symposium on Database Applications in Non-Traditional Environments (DANTE'99)(Cat. No. PR00496).
    Steiner, F. (1973). Multilingual dictionary of technical terms in cartography. Ed. International Cartographic Association. Commission II: Definition, Classification and Standardization of Technical Terms in Cartography. Wiesbaden, 83, 573.
    Sterlacchini, S., Bordogna, G., Cappellini, G., & Voltolina, D. (2018). SIRENE: A spatial data infrastructure to enhance communities’ resilience to disaster-related emergency. International Journal of Disaster Risk Science, 9(1), 129-142.
    Steven, A. R. (2005). The US National Spatial Data Infrastructure: What is new? Proceedings of the ISPRS Workshop on Service and Application of Spatial Data Infrastructure, Hangzhou, China, XXXVI (4/W6),
    Stoter, J., van den Brink, L., Vosselman, G., Goos, J., Zlatanova, S., Verbree, E., Klooster, R., van Berlo, L., Vestjens, G., & Reuvers, M. (2011). A generic approach for 3D SDI in the Netherlands. Proceedings of the Joint ISPRS Workshop on 3D City Modelling&Applications and the 6th 3D GeoInfo Conference Wuhan, China,
    Su, K., Li, J., & Fu, H. (2011). Smart city and the applications. 2011 International Conference on Electronics, Communications and Control (ICECC), 1028-1031.
    Tansel, A. U., Clifford, J., Gadia, S., Jajodia, S., Segev, A., & Snodgrass, R. (1993). Temporal databases: theory, design, and implementation: Benjamin-Cummings Publishing Co., Inc.
    Tao, F., & Qi, Q. (2019). Make more digital twins. In: Nature Publishing Group.
    Tao, F., Zhang, M., Cheng, J., & Qi, Q. (2017). Digital twin workshop: a new paradigm for future workshop. Computer Integrated Manufacturing Systems, 23(1), 1-9.
    Thomas, R., Idol, T., & Consortium, O. G. (2019). Development of Spatial Data Infrastructures for Marine Data Management; OGC-IHO Marine SDI Concept Development Study (CDS).
    Tobler, W. (1988). Resolution, resampling, and all that. Building databases for global science, 12, 9-137.
    Tosta, N. (1995). Data Policies and the National Spatial Data Infrastructure. Law And Information Policy For Spatial Database. FGDC. In.
    Trakas, A., Janssen, P., & Stoter, J. (2012). Advancing Open 3D Modelling Standards in National Spatial Information Policy. European Journal of ePractice, 17, September 2012, pp. 68-79.
    Tuegel, E. (2012). The airframe digital twin: some challenges to realization. 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference 20th AIAA/ASME/AHS adaptive structures conference 14th AIAA,
    Tyagi, P., & Demirkan, H. (2016). Data lakes: the biggest big data challenges. Analytics Magazine, 56.
    Um, J., Weyer, S., & Quint, F. (2017). Plug-and-Simulate within Modular Assembly Line enabled by Digital Twins and the use of AutomationML. IFAC-PapersOnLine, 50(1), 15904-15909.
    Valachamy, M., Sahibuddin, S., Ahmad, N. A., & Bakar, N. A. A. (2021). Geospatial Data Sharing: The Role of Coordination and Data Integration in Spatial Data Infrastructure. Open International Journal of Informatics, 9(2), 64-70.
    Van Loenen, B., & Kok, B. (2004). Spatial data infrastructure and policy development in Europe and the United States.
    Van Oosterom, P., & Stoter, J. (2010). 5D data modelling: full integration of 2D/3D space, time and scale dimensions. Geographic Information Science: 6th International Conference, GIScience 2010, Zurich, Switzerland, September 14-17, 2010. Proceedings 6,
    Vandenbroucke, D., Janssen, K., & Crompvoets, J. (2011). Spatial Data Infrastructures in Switzerland: State of Play 2011.
    Vangenot, C., Parent, C., & Spaccapietra, S. (2002). Modelling and manipulating multiple representations of spatial data. In Advances in Spatial Data Handling (pp. 81-93): Springer.
    Verbree, E., Stoter, J., Zlatanova, S., De Haan, G., Reuvers, M., Vosselman, G., . . . Klooster, R. (2010). A 3D model for geo-information in the Netherlands. Paper presented at the Special Joint Symposium of ISPRS Technical Commission IV & AutoCarto, in conjunction with ASPRS/CaGIS 2010 Fall Specialty Conference, Orlando, Florida, November 15-19, 2010.
    Vilgertshofer, S., Amann, J., Willenborg, B., Borrmann, A., & Kolbe, T. H. (2017). Linking BIM and GIS Models in Infrastructure by Example of IFC and CityGML. In Computing in civil engineering 2017 (pp. 133-140).
    Volkswagen. (2020). Industry 4.0: ŠKODA AUTO Vrchlabí Plant Has Made Use of ‘Digital Twin’. https://www.volkswagenag.com/en/news/2020/07/Digital_twin.html#
    Wagner, R., Schleich, B., Haefner, B., Kuhnle, A., Wartzack, S., & Lanza, G. (2019). Challenges and potentials of digital twins and industry 4.0 in product design and production for high performance products. Procedia Cirp, 84, 88-93.
    Wang, J., Ye, L., Gao, R. X., Li, C., & Zhang, L. (2019). Digital Twin for rotating machinery fault diagnosis in smart manufacturing. International Journal of Production Research, 57(12), 3920-3934.
    Wang, K., Hu, Q., Zhou, M., Zun, Z., & Qian, X. (2021). Multi-aspect applications and development challenges of digital twin-driven management in global smart ports. Case Studies on Transport Policy, 9(3), 1298-1312.
    Warke, V., Kumar, S., Bongale, A., & Kotecha, K. (2021). Sustainable development of smart manufacturing driven by the digital twin framework: a statistical analysis. Sustainability, 13(18), 10139.
    White, G., Zink, A., Codeca, L., & Clarke, S. (2021). A digital twin smart city for citizen feedback. Cities, 110. Retrieved from <Go to ISI>://WOS:000618544100001
    Williamson, I. P., Rajabifard, A., & Feeney, M.-E. F. (2003). Developing spatial data infrastructures: from concept to reality: CRC Press.
    Williamson, I., Enemark, S., Wallace, J., & Rajabifard, A. (2010). Land administration for sustainable development: Citeseer.
    Witte, P., Slack, B., Keesman, M., Jugie, J.-H., & Wiegmans, B. (2018). Facilitating start-ups in port-city innovation ecosystems: A case study of Montreal and Rotterdam. Journal of Transport Geography, 71, 224-234.
    Wu, H. (2010). Survey on three-dimensional spatial data models in GIS. Paper presented at the 2010 The 2nd Conference on Environmental Science and Information Application Technology.
    Yan, J., Zlatanova, S., Aleksandrov, M., Diakite, A., & Pettit, C. J. (2019). Integration of 3D objects and terrain for 3D modelling supporting the digital twin.
    Yi, X. (2006). Multiple Representation Data Capture. Masters Abstracts International,
    Yue, P., Guo, X., Zhang, M., Jiang, L., & Zhai, X. (2016). Linked Data and SDI: The case on Web geoprocessing workflows. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 245-257.
    Zlatanova, S. (2000). 3D GIS for urban development.
    內政部. (2020). 建築技術規則.
    內政部. (2021). 建築技術規則建築設計施工編.
    內政部. (2022). 建築法.
    內政部. (2023). 地籍測量實施規則.
    內政部國土測繪中心 (2020). 三維道路模型資料標準(草案)
    內政部國土測繪中心 (2022). 三維建物模型資料標準.
    內政部國土測繪中心. (2011). 一千分之一地形圖測製規範.
    內政部國土測繪中心. (2020b). 通用版電子地圖測製更新作業說明.
    江渾欽, & 馮怡婕. (2012). 地籍建物三維資料流通架構建立之研究. Journal of Taiwan Land Research, 15(1), 127-155.
    李宗華. (2008). 數字城市空間數據基礎設施建設與應用 (Vol. 2): 科学出版社.
    周孟圻, & 饒見有. (2022). 利用拓樸約制條件協助 LOD-2 屋頂模型重建. Journal of Photogrammetry and Remote Sensing, 27(1), 43-60.
    施弘晉. (2000). 空間連通關係的建築分類演算. 臺灣博碩士論文知識加值系統. https://hdl.handle.net/11296/nqqne3
    洪子茵, & 張金鶚. (2002). 台北市集合住宅管理維護模式之研究. 都市與計劃, 29(3), 421-444.
    洪榮宏. (2016). 標準制度觀點之地理資訊流通與分享. 國土資訊通訊季刊, 100, 12-17. https://standards.moi.gov.tw/Background/Uploads/files/Quarterly/100%e6%9c%9f.pdf
    徐百輝. (2019). 國際空間資訊發展新浪潮. 國土及公共治理季刊, 7(2), 8-21.
    翁享裕. (2019). 建物測量成果圖加值運用-以臺中市 1/1000 數值地形圖房屋圖層資料更新為例-中興地政所. https://rdnet.taichung.gov.tw/1236552/post
    財團法人地理資訊中心. GIS發展沿革. https://www.tgic.org.tw/content/GisHistory.aspx
    張國楨, & 黃美甄. (2014). 無人飛行載具數值地形模型精度評估及應用.
    新北市汐止地政事務所. (2021). 依地籍測量實施規則第 282-2 及第 282-3 條轉繪成果圖應注意事項. https://www-ws.land.ntpc.gov.tw/Download.ashx?u=LzAwMS9VcGxvYWQvNDA0L3JlbGZpbGUvMC8xMTcyNC8yZTBjMjk1YS0wZjhjLTQxODgtODNlMi1iYTc2MTMxNzIyYjEucGRm&n=5L6d5Zyw57GN5ris6YeP5a%2Bm5pa96KaP5YmH56ysMjgyLTLlj4rnrKwyODItM%2Bainei9iee5quaIkOaenOWcluaHieazqOaEj%2BS6i%2BmghV8xMTAxMDA15L%2BuLnBkZg%3D%3D
    新北市新莊地政事務所. (2022). 簡述建物第一次測量及建物測量成果圖. https://www-ws.land.ntpc.gov.tw/001/Upload/407/relfile/9040/8649/b0660fe6-8b37-4771-8d27-5ec4e923148a.pdf
    劉正倫, 蔡季欣, 林昌鑑, & 湯美華. (2019). 三維國家底圖建置. 國土及公共治理季刊, 7(2), 84-89.

    無法下載圖示 校內:2026-08-22公開
    校外:2026-08-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE