| 研究生: |
邱柏鈞 Chiu, Po-Chun |
|---|---|
| 論文名稱: |
波浪與曲面海堤交互作用之研究 Interaction of Water Waves and Curved Seawalls |
| 指導教授: |
黃清哲
Huang, Ching-Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 曲面海堤 、質點等位函數法 、質量守恆邊界法 |
| 外文關鍵詞: | curved seawall, Particle Level Set Method, Mass-Conserved Boundary Method, Flaring, Shaped Seawall |
| 相關次數: | 點閱:80 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以數值模式求解二維非穩態雷諾平均方程式 (RANS)及紊流模式(k-ε model),模擬波浪入射至曲面海堤 (curved seawall) 後之流場特性。本文應用質點等位函數法 (Particle Level Set Method) 來計算波浪在溯升過程中自由液面的複雜變化。為使卡氏座標下滿足曲面海堤之不規則邊界條件,本文採用質量守恆邊界法 (Mass-Conserved Boundary Method) 模擬波浪與曲面海堤之交互作用。為了確定數值模式的準確度,本文利用前人研究來驗證本模式計算結果,包含缺口圓盤問題 (Zalesak’s problem)、均勻流通過圓柱與孤立波於斜坡上之溯升(Lin et al., 1999),數值結果對比於實驗結果皆相當一致。在驗證數值模式之準確性後,本文首先研究曲面海堤中 Flaring Shaped Seawall (FSS) 的波壓之驗證,以Sundar and Anand (2010) Cn波入射至FSS之實驗數據,與數值結果相較吻合。後以孤立波入射至不同形狀之曲面海堤,針對其流場演變、壓力及底床剪應力以及邊界層流速等流場性質做探討。
In this study, numerical schemes are developed for simulating the fluid flow behavior near curved seawalls. The unsteady, two-dimensional Reynolds Averaged Navier-Stokes equations (RANS) and the turbulence model (k-ε model) are solved to model the real fluid behavior. A Level Set Method is adopted to capture the complex free surface evolution. A Mass-Conserved Boundary Method (MCBM) is applied to represent the fluid-solid interaction in the vicinity of curved seawalls under the Cartesian grid system. To validate the present numerical model, several numerical tests are conducted; including the Zalesak’s problem, a uniform flow past a circular cylinder, and run-up of solitary waves on a sloping bed (Lin et al., 1999). The present numerical results are in good agreement with the exact solution and experimental data. Besides, the numerical model is applied to simulate the run-up of Cnoidal waves on the Flaring Shaped Seawall (FSS). The numerical results of wave pressure on the curved seawall are compared with the experimental data (Sundar and Anand, 2010) to demonstrate the accuracy of the present model. Finally, the developed model is used to investigate the run-up of a solitary wave on different seawalls, involving the vertical wall, flaring shaped seawall, reverse flaring shaped seawall, and semicircle seawall. The free surface evolution, the flow fields, the wave pressure, the bed shear stress and boundary layer flows are discussed.
1. Chen, C.-J. and Chen, H.-C. (1984). Finite analytic numerical method for unsteady two-dimensional Navier-Stokes equations. Journal of Computational Physics, Vol. 53(2), pp. 209-226.
2. Enright, D., Fedkiw, R., Ferziger, J. and Mitchell, I. (2002). A hybrid particle level set method for improved interface capturing. Journal of Computational Physics, Vol. 183(1), pp. 83-116.
3. Harlow, F. H. and Welch, J. E. (1965). Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of fluids, Vol. 8(12), pp. 2182.
4. Jiang, G.-S. and Shu, C.-W. (1995). Efficient implementation of weighted ENO schemes. (Technical Report): Computer Applications in Science and Engineering (ICASE).
5. Kamikubo Y., I. Irie, Keisuke Murakami, and Yoshihiro Hamasaki (2000). Study on Practical Application of a Non-Wave Overtopping Type Seawall, Proc. 24th Int. Conf. Coastal. Eng., ASCE, Vol. 3 pp 2215-2228.
6. Kamikubo Y., Murakami K., Irie I., and Hamasaki Y. (2002) Transportation of water spray on non-wave overtopping type seawall, Proc. of ISOPE, Vol. 3, pp. 821-826.
7. Kamikubo Y., Murakami K., Irie I., Kataoka Y., and Hamasaki Y. (2003). Reduction of wave overtopping and water spray with using flaring shaped seawall, Proc. of ISOPE, Vol. 3, pp. 671-676
8. Kim, J., Kim, D. and Choi, H. (2001). An immersed-boundary finite-volume method for simulations of flow in complex geometries. Journal of Computational Physics, Vol. 171(1), pp. 132-150.
9. Launder, B.E. and Spalding, D.B.. (1974). The numerical computation of turbulence flows. Computer Methods In Applied Mechanics and Engineering, Vol. 3(2), pp. 269-289.
10. Launder, B.E. and Sharma, B.I. (1989). Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer, Vol. 1, pp. 131-138.
11. Lin, P. and Liu, P. (1998a). A numerical study of breaking waves in the surf zone. Journal of Fluid Mechanics, Vol. 359, pp. 239-264.
12. Lin, P. and Liu, P. L. F. (1998b). Turbulence transport, vorticity dynamics, and solute mixing under plunging breaking waves in surf zone. J. Geophys. Res., Vol. 103(C8), pp. 15677-15694.
13. Lin, P., Chang, K.-A. and Liu, P. L.-F. (1999). Runup and rundown of solitary waves on sloping beaches. Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 125(5), pp. 247-255.
14. Murakami, K., I. Irie and Y. Kamikubo (1996). Experiments on a Non-Wave Overtopping Type Seawall, Proc. 24th Int. Conf. Coastal. Eng., ASCE, pp 1840-1851.
15. Murakami, K., Kamikubo Y., and Kataoka Y. (2008) Hydraulic Performances of Non-wave Overtopping type Seawall against Sea Level rise due to Global Warming, Proc. of ISOPE, Vol. 3, pp. 706-712
16. Osher, S. and Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, Vol. 79(1), pp. 12-49.
17. Park, S. P., Kim, E. Y. and Kim, D. I. (1998). Systems for production of calves from Hanwoo (Korean Native Cattle) IVM/IVF/IVC blastocyst I. Hanwoo IVM/IVF/IVC blastocyst cryopreserved by vitrification. Reproductive & developmental biology, Vol. 22(4), pp. 349-357.
18. Peng, D., Merriman, B., Osher, S., Zhao, H. and Kang, M. (1999). A PDE-Based fast local level set method. Journal of Computational Physics, Vol. 155(2), pp. 410-438.
19. Sundar, V. & Anand, K. V. 2010. Dynamic pressure and run-up on curved seawalls compared with vertical wall under cnoidal waves. Indian Journal of Marine Sciences, Vol. 39, pp. 579-588.
20. Weber C, Seawall, United States patent office, U.S. Pat. 1971, 324, field July. 18, 1934, issued Aug. 21, 1934
21. Wiegel, R. L. (1960). A presentation of cnoidal wave theory for practical application. Journal of Fluid Mechanics, Vol. 7(02), pp. 273-286.
22. 陳志欣,”應用質量守恆邊界法模擬波浪於不規則近岸結構物上之溯升與越波” ,國立成功大學水利及海洋工程研究所博士論文. (2011)