簡易檢索 / 詳目顯示

研究生: 周建彰
Chou, Chien-Chang
論文名稱: 94-GHz CMOS毫米波單混頻器次諧波射頻收發機晶片及具自動化洩漏迴波消除功能之60-GHz非接觸式人體呼吸心跳訊號CMOS射頻感測晶片系統設計研究
Research on 94-GHz CMOS Millimeter-Wave Single-Mixer Sub-Harmonic RF Transceiver and 60-GHz CMOS Vital Signs Doppler Radar Sensor with Automatic Clutter Cancellation
指導教授: 莊惠如
Chuang, Huey-Ru
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 89
中文關鍵詞: 自動化洩漏迴波消除雙向射頻收發機鎊線毫米波功率偵測器單混頻器次諧波生理訊號都卜勒雷達
外文關鍵詞: Automatic clutter cancellation, Bidirectional RF transceiver, Bondwire, Millimeter-wave, Power detector, RF transceiver, Single-mixer, Sub-harmonic, Vital-signs Doppler radar
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文第一部分主要為設計一個90奈米CMOS 90-100 GHz雙向次諧波射頻前端收發機,利用單一混頻器實現具低成本及低系統複雜度且高整合度之W-band 雙向單晶片射頻前端收發機,可應用於Gigabit毫米波無線通訊。本雙向CMOS次諧波射頻前端收發機電路包含兩個射頻收發開關、一個低雜訊放大器、一個功率放大器及一個雙向次諧波混頻器。整體射頻發射機轉換增益及3-dB頻寬分別為2.88 dB與13 GHz,2LO-RF 洩漏訊號低於 -30 dBm;射頻收發機轉換增益及3-dB頻寬分別為11.71 dB與11 GHz,3-dB頻寬內平均雜訊指數為11.4 dB。晶片整體功率消耗為245 mW,晶片面積為1.37 mm × 0.716 mm。
    第二部分為研製整合自動洩漏迴波消除次系統之單天線非接觸式60-GHz毫米波CMOS都卜勒雷達人體呼吸心跳訊號感測射頻晶片。利用單晶片微處理機控制器來達到自動消除環境與系統中之洩漏迴波,以增強系統偵測靈敏度與距離,洩漏迴波自動消除程序可於一秒內完成。再加以鎊線方式聯結感測晶片及毫米波平面陣列天線降低訊號路徑上的損耗,改善整體系統性能。射頻感測晶片於自動器振動實測中,量測到的振動訊號大小比起無消除洩漏迴波情況下大約10倍以上;於人體呼吸心跳訊號實測中,最遠測試距離為120 cm (感測晶片藉由鎊線接至平面陣列天線),可成功偵測到明顯的心跳(1 – 1.3 Hz ; 60 –78 beats/min)及呼吸(約0.35 – 0.45 Hz ; 21 –27 breaths/min)訊號,晶片整體功率消耗為243 mW。此60-GHz感測射頻晶片結合微處理機控制器提供一高整合性之設計方案可應用於遠端無線健康監控系統。

    This dissertation has two parts. The first part focuses on the design, implementation and measurement of a 90-100 GHz millimeter-wave (MMW) fully-integrated bidirectional sub-harmonic RF transceiver front-end in 90-nm CMOS technology. The fully-integrated bidirectional transceiver front-end consists of two transmit-receive (T/R) switches, a low-noise amplifier (LNA), a power amplifier (PA), and a bidirectional sub-harmonic mixer. In the transmitting (Tx) mode, the RF transceiver has a maximum conversion gain of 2.88 dB at 94.1 GHz and a 3-dB bandwidth from 90 to 103 GHz. The 2LO-RF leakage is less than -30 dBm over 3-dB bandwidth. In the receiving (Rx) mode, the maximum conversion gain at 94.1 GHz is 11.71 dB and the 3-dB bandwidth is from 91 to 102 GHz. The minimum noise figure (NF) is about 11 dB at 95.1 GHz. The total dc power consumption is 245 mW. The overall chip size is 1.37 mm × 0.716 mm.
    For the second part, it is devoted to develop a fully-integrated 60-GHz CMOS single-antenna vital-sign Doppler radar (VSDR) sensor chip with automatic clutter cancellation function. The automatic clutter cancellation subsystem is designed with an integrated V-band power detector (PD) and a separated microprocessor control unit (MCU). Through the output dc voltage of the power detector to which the clutter signal is fed, the MCU controls the variable gain amplifier (VGA) and the adjustable phase shifter (PS) to minimize the effect of clutter signal on the VSDR sensor. This function will enhance the detecting sensitivity and detection range. The radar chip and a planar MMW patch-array antenna are integrated by a compact bondwire interconnection. The experimental measurements show that the fast response time of the automatic clutter cancellation loop with MCU is less than 1 second. In the actuator vibrating test (0.4 and 1.2 Hz vibration), the detected vibrating waveform amplitude with good clutter cancellation is more than 10 times larger than that without it. For the human vital-signs detection test at a distance of 120 cm, the measured heartbeat and respiration frequency are around 1.1 Hz (66 beats/min) and 0.4 Hz (24 breaths/min), respectively. The presented versatile 60-GHz MMW VSDR sensor chip with MCU-controlled fast automatic clutter cancellation can be potentially incorporated into smartphone devices for the important application, such as wireless remote physiological monitoring healthcare.

    Chapter 1 Introduction 1 1.1 Introduction to Millimeter Wave Transceiver Front-End for Gigabit Communication Systems 1 1.2 Introduction to Continuous-Wave Doppler Radar RF Sensor for Noncontact Vital-Signs Detection 3 1.3 Organization of Dissertation 5 Chapter 2 75-110 GHz Transmitter/Receiver Switch in 90-nm CMOS 7 2.1 Introduction 7 2.2 W-band CMOS High-Isolation T/R Switch Using Leakage-cancellation Technique 9 2.2.1 Transistors Size Consideration 9 2.2.2 Parallel-Shunt Inductor Design 10 2.2.3 Body-Floating Technique 12 2.2.4 Phase Shifter Design Consideration 15 2.2.5 Simulation and Experimental Measurement 17 2.3 W-band CMOS High-Linearity Traveling Wave T/R Switch Using Negative Gate-/Body-biasing 23 2.3.1 Traveling-Wave SPDT Switch 23 2.3.2 Negative Gate/Body-Biasing Technique 28 2.3.3 Simulation and Experimental Measurement 30 2.4 Summary 33 Chapter 3 90-100 GHz Bidirectional Sub-Harmonic RF Transceiver Front-End in 90 nm CMOS 35 3.1 Introduction 35 3.2 Integrated Bidirectional Sub-Harmonic RF Transceiver Circuit Design 36 3.2.1 Transmit-Receive (T/R) Switch 36 3.2.2 Power Amplifier (PA) 37 3.2.3 Low Noise Amplifier (LNA) 39 3.2.4 Up/Down Conversion Sub-Harmonic Mixer 40 3.3 Simulation and Experimental Measurement 43 3.4 Summary 47 Chapter 4 60-GHz CMOS Vital-Signs Doppler Radar Sensor with Integrated Power Detector for Clutter Monitoring and Automatic Clutter-Cancellation 49 4.1 Introduction 49 4.2 Vital-Signs Doppler Radar System [104]-[105] 50 4.3 Design of Vital-Signs Doppler Radar Sensor with Integrated Power Detector Circuit 55 4.3.1 Tx Circuit [52],[104] 56 4.3.2 High Isolation QC [52],[104] 56 4.3.3 Clutter Cancellation Circuit [52],[104] 59 4.3.4 Rx Circuit [52],[104] 60 4.3.5 Power Detector 61 4.3.6 Power Detector Integrated in Radar Chip 67 4.3.7 Automatic Clutter Cancellation Control Program 69 4.4 Test Measurement of Integrated Vital-Signs Radar Sensor Bondwired with Planar Antenna Using Automatic Clutter Cancellation 71 4.4.1 Actuator Vibration Detection Test 71 4.4.2 Human Vital-Signs Detection Test 74 4.5 Summary 77 Chapter 5 Conclusion and Future Work 79 5.1 Conclusion 79 5.2 Future work 80 Reference 83

    [1]T. Yao, M. Q. Gordon, K. K. W. Tang, K. H. K. Yau, M.-T. Yang, P. Schvan, and S. P. Voinigescu, “Algorithmic design of CMOS LNAs and PAs for 60-GHz radio,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1044–1057, May. 2007.
    [2]F. Arnaud, B. Duriez, B. Tavel, L. Pain, J. Todeschini, M. Jurdit, Y. Laplanche, F. Boeuf, F. Salvetti, D. Lenoble, J. P. Reynard, F. Wacquant, P. Morin, N. Emonet, D. Barge, M. Bidaud, D. Ceccarelli, P. Vannier, Y. Loquet, H. Leninger, F. Judong, C. Perrot, I. Guilmeau, R. Palla, A. Beverina, V. DeJonghe, M. Broekaart, V. Vachellerie, R. A. Bianchi, B. Borot, T. Devoivre, N. Bicais, D. Roy, M. Denais, K. Rochereau, R. Difrenza, N. Planes, H. Brut, L. Vishnobulta, D. Reber, P. Stolk, and M. Woo, “Low cost 65 nm CMOS platform for low power & general purpose applications,” in Symp. VLSI Technol. Tech. Dig., 2004, pp. 10–11.
    [3]P. Chevalier, C. Fellous, L. Rubaldo, F. Pourchon, S. Pruvost, R. Beerkens, F. Saguin, N. Zerounian, B. Barbalat, F. Aniel, D. Dutartre, D. Gloria, D. Celi, I. Telliez, S. Lepilliet, F. Danneville, and A. Chantre, “230-GHz self-aligned SiGe HBT for optical and millimeter-wave applications,” IEEE J. Solid-State Circuits, vol. 40, no. 10, pp. 2025–2034, Oct. 2005.
    [4]P.-Y. Wu, T. Kijsanayotin, and J. F. Buckwalter, “A 71–86-GHz switchless asymmetric bidirectional transceiver in a 90-nm SiGe BiCMOS,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 12, pp. 4262–4273, Dec. 2016.
    [5]A. Natarajan, S. L. Reynolds, M.-D. Tsai, S. T. Nicolson, J.-H. C. Zhan, D. G. Kam, D. Liu, Y.-L. O. Huang, A. V. Garcia, and B. A. Floyd, “A fully-integrated 16-element phased-array receiver in SiGe BiCMOS for 60-GHz communications,” IEEE J. Solid-State Circuits, vol. 46, no. 5, pp. 1059–1075, May 2011.
    [6]E. Cohen, M. Ruberto, M. Cohen, O. Degani, S. Ravid, and D. Ritter, “A CMOS bidirectional 32-Element phased-array transceiver at 60GHz with LTCC antenna,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 3, pp. 1359–1375, Mar. 2013.
    [7]V. Vidojkovic, V. Szortyka, G. Mangraviti, K. Khalaf, K. Vaesen, S. Brebels, W. Van Thillo, B. Parvais, M. Libois, M. Matsuo, C. Soens, and P. Wambacq, “A low-power radio chipset in 40 nm LP CMOS with beamforming for 60 GHz high-data-rate wireless communication,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2013, pp. 236–237.
    [8]T. Kosugi, A. Hirata, T. Nagatsuma, and Y. Kado, “MM-wave long-range wireless systems,” IEEE Microw. Mag., vol. 10, no. 2, pp. 68–76, Apr. 2009.
    [9]S. Y. Kim, O. Inac, C.-Y. Kim, D. Shin, and G. M. Rebeiz, “A 76–84-GHz 16-element phased-array receiver with a chip-level built-in self-test system,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 3083–3098, Aug. 2013,
    [10]S. Shahramian, Y. Baeyens, N. Kaneda, and Y.-K. Chen, “A 70–100 GHz direct-conversion transmitter and receiver phased array chipset demonstrating 10 Gb/s wireless link,” IEEE J. Solid-State Circuits, vol. 48, no. 5, pp. 1113–1125, May 2013.
    [11]M. Marcus and B. Pattan, “Millimeter wave propagation: spectrum management implications,” IEEE Microw. Mag., vol. 6, no. 2, pp. 54–62, 2005.
    [12]A. Arbabian, S. Callender, S. Kang, M. Rangwala, and A. M. Niknejad, “A 94 GHz mm-wave-to-baseband pulsed-radar transceiver with applications in imaging and gesture recognition,” IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 1055–1071, Apr. 2013.
    [13]M. Jahn, R. Feger, C. Wagner, Z. Tong, and A. Stelzer, “A four-channel 94-GHz SiGe-based digital beamforming FMCW radar,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 3, pp. 861–869, Mar. 2012.
    [14]A. Natarajan, A. Valdes-Garcia, B. Sadhu, S. K. Reynolds, and B. D. Parker, “W-band dual-polarization phased-array transceiver frontend in SiGe BiCMOS,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 6, pp. 1989–2002, Jun. 2015.
    [15]A. Townley, P. Swirhun, D. Titz, A. Bisognin, F. Gianesello, R. Pilard, C. Luxey, and A. M. Niknejad, “A 94-GHz 4TX–4RX phased-array FMCW radar transceiver with antenna-in-package,” IEEE J. Solid-State Circuits, vol. 52, no. 5, pp. 1245–1259, May 2017.
    [16]S. Shahramian, M. Hoyoak, and Y. Baeyens, “A 16-element W-band phased-array transceiver chipset with flip-chip PCB integrated antennas for multi-gigabit wireless data links,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 7, pp. 3389–3402, Jul. 2018
    [17]S. K. Kim, R. Maurer, A. Simsek, M. Urteaga, and M. J. W. Rodwell, “An ultra-low-power dual-polarization transceiver front-end for 94-GHz phased arrays in 130-nm InP HBT,” IEEE J. Solid-State Circuits, vol. 52, no. 9, pp. 2267–2276, Sep. 2017.
    [18]P.-J. Peng, P.-N. Chen, C. Kao, Y.-L. Chen, and J. Lee, “A 94 GHz 3D image radar engine with 4TX/4RX beamforming scan technique in 65 nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 50, no. 3, pp. 656–668, Mar. 2015.
    [19]M. Khanpour, K. W. Tang, P. Garcia, and S. P. Voinigescu, “A wideband W-band receiver front-end in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 8, pp. 1717–1730, Aug. 2008.
    [20]A. Tomkins, P. Garcia, and S. P. Voinigescu, “A passive W-band imaging receiver in 65-nm bulk CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 10, pp. 1981–1991, Oct. 2010.
    [21]H.-Y. Su, R. Hu, and C.-Y. Wu, "A 78-102 GHz front-end receiver in 90 nm CMOS technology," IEEE Microw. Wireless Compon. Lett., vol. 21, no. 9, pp. 489-491 Sep. 2011.
    [22]J. C. Lin, “Noninvasive microwave measurement of respiration,” Proc. IEEE, vol. 63, no. 10, p. 1530, Oct. 1975.
    [23]K.-M. Chen, D. Misra, H. Wang, H.-R. Chuang, and E. Postow, “An X-band microwave life-detection system,” IEEE Trans. Biomed. Eng., vol. BME-33, pp. 697–702, Jul. 1986.
    [24]H.-R. Chuang, Y.-F. Chen, and K.-M. Chen, “Automatic clutter-canceller for microwave life-detection system,” IEEE Trans. Instrum. Meas., vol. 40, no. 4, pp. 747–750, Aug. 1991.
    [25]K.-M. Chen, Y. Huang, J. Zhang, and A. Norman, “Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier,” IEEE Trans. Biomed. Eng., vol. 27, no. 1, pp. 105–114, Jan. 2000.
    [26]N. Hafner, I. Mostafanezhad, V. M. Lubecke, O. Boric-Lubecke, and A. Host-Madsen, “Non-contact cardiopulmonary sensing with a baby monitor,” in 29th Annu. IEEE Int. Eng. Med. Biol. Soc. Conf., 2007, pp. 2300–2302.
    [27]B. K. Park, O. Boric-Lubecke, and V. M. Lubecke, “Arctangent demodulation with DC offset compensation in quadrature Doppler radar receiver systems,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 5, pp. 1073–1079, May 2007.
    [28]Y. Xiao, J. Lin, O. Boric-Lubecke, and V. M. Lubecke, “Frequency-tuning technique for remote detection of heartbeat and respiration using low-power double-sideband transmission in the -band,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 5, pp. 2023–2032, May 2006.
    [29]C. Z. Gu, J. Long, J. T. Huangfu, S. Qiao, W. Z. Cui, W. Ma, and L. X. Ran, “An instruments-built Doppler radar for sensing vital signs,” in Proc. 8th Int. Antennas, Propag., EM Theory Symp., 2008, vol. 1–3, pp. 1386–1389.
    [30]A. Singh and V. M. Lubecke, “Respiratory monitoring and clutter rejection using a CW radar with passive RF tags,” IEEE Sensors J., vol. 12, no. 3, pp. 558–565, Mar. 2012.
    [31]G. Vinci, S. Lindner, F. Barbon, S. Mann, M. Hofmann, A. Duda, R. Weigel, and A. Koelpin, “Six-port radar sensor for remote respiration rate and heartbeat vital-sign monitoring,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2093–2100, May 2013.
    [32]F. Lurz, F. Michler, B. Scheiner, R. Weigel, and A. Koelpin, “Microw(h)att?! Ultralow-power six-port radar: Realizing highly integrated portable radar systems with good motion sensitivity at relatively low cost,” IEEE Microw. Mag., vol. 19, no. 1, pp. 91–98, Jan. 2018.
    [33]F.-K. Wang, C.-J. Li, C.-H. Hsiao, T.-S. Horng, J. Lin, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 4112–4120, Dec. 2010.
    [34]F.-K. Wang, T.-S. Horng, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “Single-antenna Doppler radars using self and mutual injection locking for vital sign detection with random body movement cancellation,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 12, pp. 3577–3587, Dec. 2011.
    [35]M.-C. Tang, F.-K. Wang, and T.-S. Horng, “Single self-injection-locked radar with two antennas for monitoring vital signs with large body movement cancellation,” IEEE Trans. Microw. Theory Techn., vol. 65, no.12, pp.5324-5333, 2017.
    [36]C. Gu, G. Wang, Y. Li, T. Inoue, and C. Li, “A hybrid radar-camera sensing system with phase compensation for random body movement cancellation in Doppler vital sign detection,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 12, pp. 4678–4688, Dec. 2013.
    [37]A. Rahman, E. Yavari, A. Singh, V. M. Lubecke, and O. B. Lubecke, “A low-IF tag-based motion compensation technique for mobile Doppler radar life signs monitoring,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 10, pp. 3034–3041, Oct. 2015.
    [38]F. Zhu, K. Wang, and K. Wu, “A fundamental-and-harmonic dual-frequency Doppler radar system for vital signs detection enabling radar movement self-cancellation,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 11, pp. 5106–5118, Nov. 2018.
    [39]M. Mercuri, Y.-H. Liu, I. Lorato, T. Torfs, A. Bourdoux, and C. Van Hoof, “Frequency-tracking CW Doppler radar solving small angle approximation and null point issues in non-contact vital signs monitoring,” IEEE Trans. Biomed. Circuits Syst., vol. 11, no. 3, pp. 671–680, Jun. 2017.
    [40]C. Li and J. Lin, “Complex signal demodulation and random body movement cancellation techniques for non-contact vital sign detection,” in IEEE MTT-S Int. Microw. Symp. Dig., 2008, pp. 567–570.
    [41]C. Li, Y. Xiao, and J. Lin, “Experiment and spectral analysis of a low-power ka-band heartbeat detector measuring from four sides of a human body,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 12, pp. 4464–4471, Dec. 2006.
    [42]W. Hu, Z. Zhao, Y. Wang, H. Zhang, and F. Lin, “Noncontact accurate measurement of cardiopulmonary activity using a compact quadrature Doppler radar sensor,” IEEE Trans. Biomed. Eng., vol. 61, no. 3, pp. 725–735, Mar. 2014
    [43]M. Li and J. Lin, “Wavelet-transform-based data-length-variation technique for fast heart rate detection using 5.8-GHz CW Doppler radar,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 1, pp. 568–576, Jan. 2018.
    [44]J. H. Choi, and D. K. Kim, “A remote compact sensor for the real-time monitoring of human heartbeat and respiration rate,” IEEE Trans. Biomed. Circuits Syst., vol. 3, no. 3, pp. 181–188, Jun. 2009.
    [45]C.-H. Tseng, and Y.-H. Lin, “24-GHz self-injection-locked vital-sign radar sensor with CMOS injection-locked frequency divider based on push–push oscillator topology,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 11, pp. 1053–1055, Sept. 2018.
    [46]P. Li and N. Huo, “A portable 24GHz Doppler radar system for distant human vital sign monitoring,” Proc. - 2018 5th Int. Conf. Inf. Sci. Control Eng. ICISCE 2018, pp. 1050–1052, 2018.
    [47]Q. Lv, L. Chen, K. An, J. Wang, H. Li, D. Ye, J, Huangfu, C. Li, and L. Ran, “Doppler vital signs detection in the presence of large-scale random body movements,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 9, pp. 4261–4270, Sept. 2018.
    [48]T. Yao, L. Tchoketch-Kebir, O. Yuryevich, M. Gordon, and S. P. Voinigescu, “65 GHz Doppler sensor with on-chip antenna in 0.18 m SiGe BiCMOS,” in IEEE MTT-S Int. Microw. Symp. Dig., 2006, pp. 1493–149
    [49]F. Starzer, M. Ortner, H. Forstner, R. Feger, and A. Stelzer, “A fully integrated 60-GHz radar sensor with partly integrated phase-locked loop,” in Microwave Symposium Digest (MTT), Jun 2011, pp. 1 –4.
    [50]H.-R. Chuang, H.-C. Kuo, F.-L. Lin, T.-H. Huang, C.-S. Kuo, and Y.-W. Ou, “60-GHz millimeter-wave life detection system (MLDS) for noncontact human vital-signal monitoring,” IEEE Sensors J., vol. 12, no. 3, pp. 602-609, Mar. 2012.
    [51]T.-Y. J. Kao, Y. Yan, T.-M. Shen, A. Y.-K. Chen, and J. Lin, “Design and analysis of a 60-GHz CMOS micro-radar system-in-package for vital-sign and vibration detection,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1649–1659, Apr. 2013.
    [52]H.-C. Kuo, C.-C. Lin, C.-H. Yu, P.-H. Lo, J.-Y. Lyu, C.-C. Chou, and H.-R. Chuang, “A fully integrated 60-GHz CMOS direct-conversion Doppler radar RF sensor with clutter canceller for single-antenna noncontact human vital-signs detection,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 4, pp. 1018–1028, Apr. 2016.
    [53]S. Bakhtiari, T. W. Elmer, N. M. Cox, N. Gopalsami, A. C. Raptis, S. Liao, I. Mikhelson, and A. V. Sahakian, “Compact millimeter-wave sensor for remote monitoring of vital signs,” IEEE Trans. Instrum. Meas., vol. 61, no. 3, pp. 830–841, Mar. 2012.
    [54]D. T. Petkie, C. Benton, and E. Bryan, “Millimeter wave radar for remote measurement of vital signs,” in IEEE Radar Conf., 2009, pp. 1–3.
    [55]Y. Jin and C. Nguyen, “Ultra-compact high-linearity high-power fully integrated DC–20-GHz 0.18-μm CMOS T/R Switch,” IEEE Trans. Microw. Theory Techn., vol. 55, pp. 30–36, Jan. 2007.
    [56]K.-Y. Lin, W.-H. Tu, P.-Y. Chen, H.-Y. Chang, H. Wang, and R.-B. Wu, “Millimeter-wave MMIC passive HEMT switches using traveling-wave concept,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 8, pp. 1798–1808, Aug. 2004.
    [57]R. L. Schmid, P. Song, C. T. Coen, A. C. Ulusoy, and J. D. Cressler, “On the analysis and design of low-loss single-pole double-throw W-band switches utilizing saturated SiGe HBTs,” IEEE Trans. Microw. Theory Techn., vol. 62, pp. 2755–2767, Nov. 2014.
    [58]H.-Y. Chang and C.-Y. Chan, “A low loss high isolation DC-60 GHz SPDT traveling-wave switch with a body bias technique in 90 nm CMOS Process,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 2, pp. 82–84, Feb. 2010.
    [59]Z.-M. Tsai, M.-C. Yeh, M.-F. Lei, H.-Y. Chang, C.-S. Lin, and H. Wang, “FET-integrated CPW and the application in filter synthesis design method on traveling-wave switch above 100 GHz,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 5, pp. 2090–2097, May, 2006.
    [60]S.-F. Chao, H. Wang, C.-Y. Su, and J. G. J. Chern, “A 50 to 94-GHz CMOS SPDT switch using traveling-wave concept,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 2, pp. 130–132, Feb. 2007.
    [61]R.-B. Lai, J.-J. Kuo, and H. Wang, “A 60–110 GHz transmission-line integrated SPDT switch in 90 nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 2, pp. 85–87, Feb. 2010.
    [62]M. Uzunkol and G. M. Rebeiz, “A low-loss 50–70 GHz SPDT switch in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 10, pp. 2003–2007, Oct. 2010.
    [63]B.-W. Min and G. M. Rebeiz, “Ka-band low-loss and high-isolation switch design in 0.13-μm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 6, pp. 1364–1371, Jun. 2008.
    [64]S.-C. Chang, S.-F. Chang, T.-Y. Chih and J.-A. Tao, “An internally-matched high-isolation CMOS SPDT switch using leakage cancellation technique,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 525–527, July. 2007.
    [65]F.-J. Huang and K. K. O, “Single-pole double-throw CMOS switches for 900-MHz and 2.4-GHz applications on p-silicon substrates,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 35–41, Jan. 2004.
    [66]J. Park and Z. Ma, “A 15 GHz CMOS RF switch employing large-signal impedance matching,” Digest of Papers. 2006 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp. 186–189, Jan. 2006.
    [67]T. Ohnakado, S. Yamakawa, T. Murakami, A. Furukawa, E. Taniguchi, H. Ueda, N. Suematsu, and T. Oomori, “21.5-dBm power-handling 5-GHz transmit/receive CMOS switch realized by voltage division effect of stacked transistor configuration with depletion-layer-extended transistors (DETs),” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 577–584, 2004.
    [68]C. Tinella, J. Fournier, D. Belot, and V. Knopik, “A high-performance CMOS-SOI antenna switch for the 2.5–5-GHz band,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1279–1283, Jul. 2003.
    [69]M.-C. Yeh, Z.-M. Tsai, R.-C. Liu, K.-Y. Lin, Y.-T. Chang, and H. Wang, “Design and analysis for a miniature CMOS SPDT switch using body-floating technique to improve power performance,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 1, pp. 31–39, Jan. 2006.
    [70]H.-Y. Chang and C.-Y. Chan, “A low loss high isolation DC-60 GHz SPDT traveling-wave switch with a body bias technique in 90 nm CMOS Process,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 2, pp. 82–84, Feb. 2010.
    [71]H. Xu and K. K. O, “A 31.3-dBm bulk CMOS T/R switch using stacked transistors with sub-design-rule channel length in floated p-wells,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2528–2534, Nov. 2007.
    [72]F.-J. Huang and K. O, “A 0.5 μm CMOS T/R switch for 900-MHz wireless application,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 486–492, Mar. 2001.
    [73]J. Yang and K. Yang, “Broadband InGaAs PIN traveling-wave switch using a BCB-Based thin-film microstrip line structure,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 10, pp. 647–649, Oct. 2009.
    [74]T. Quemerais, L. Moquillon, J. Fournier, and P. Benech, “A SPDT switch in a standard 45 nm CMOS process for 94 GHz applications,” in Proc. European Microwave Conf. (EuMC), 2010, pp. 425–428.
    [75]X.-L. Tang, E. Pistono, P. Ferrari, and J. M. Fournier, “A traveling-wave CMOS SPDT using slow-wave transmission lines for millimeter wave application,” IEEE Electron Devices Lett., vol. 34, no. 9, pp.1094–1096, Aug. 2013
    [76]R. L. Schmid, A. C. Ulusoy, P. Song, and J. D. Cressler, “A 94 GHz, 1.4 dB insertion loss single-pole double-throw switch using reverse-saturated SiGe HBTs,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 1, pp. 56–58, Jan. 2014.
    [77]A. Ulusoy, P. Song, R. Schmid, W. Khan, M. Kaynak, B. Tillack, J. Papapolymerou, and J. Cressler, “A Low-Loss and High Isolation D-Band SPDT Switch Utilizing Deep-Saturated SiGe HBTs,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 6, pp. 400–402, Jun. 2014.
    [78]H.-H. Hsieh and L.-H. Lu, “A 40 GHz low-noise amplifier with a positive-feedback network in 0.18-um CMOS,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 8, pp. 1895–1902, Aug. 2009.
    [79]H. Samavati, H. R. Rategh, and T. H. Lee, “A 5-GHz CMOS wireless LAN receiver front end,” IEEE J. Solid-State Circuits, vol. 35, no. 5, pp. 765–772, May 2000.
    [80]B.-J. Huang, H. Wang, and K.-Y. Lin, “Millimeter-wave low power and miniature CMOS multicascode low noise amplifiers with noise reduction topology,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 12, pp. 3049–3059, Dec. 2009.
    [81]H.-C. Kuo and H.-R. Chuang, “A 60-GHz High-Gain, Low-Power, 3.7-dB Noise-Figure Low-Noise Amplifier in 90-nm CMOS,” in Proc. 43th Eur. Microw. Conf., 2013, pp. 1555–1558.
    [82]S. K. Lin, J. L. Kuo, and H. Wang, “A 60 GHz sub-harmonic resistive FET mixer using 0.13 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 10, pp. 562–564, Oct. 2011.
    [83]E. Cohen, C. Jakobson, S. Ravid, and D. Ritte, “A bidirectional TX/RX four-element phased array at 60 GHz with RF-IF conversion block in 90-nm CMOS process,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 5, pp. 1438–1446, May, 2010.
    [84]T.-Y. Chin, K.-Y. Lin, S.-F. Chang, and C.-C. Chang, “A fast clutter cancellation method in quadrature Doppler radar for noncontact vital signal detection,” in IEEE MTT-S Int. Microw. Symp. Dig., May 2010, pp. 764–767.
    [85]T. Dinc, A. Chakrabarti, and H. Krishnaswamy, “A 60 GHz CMOS full-duplex transceiver and link with polarization-based antenna and RF cancellation,” IEEE J. Solid-State Circuits, vol. 51, no. 5, pp. 1125–1140, May 2016.
    [86]C.-C. Chou, W.-C. Lai, Y.-K. Hsiao, and H.-R. Chuang, “60-GHz CMOS Doppler Radar sensor with integrated V-band power detector for clutter monitoring and automatic clutter-cancellation in noncontact vital-signs sensing,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 3, pp. 1635–1643, Mar., 2018.
    [87]Atmel Corp., ATmega 328 data sheet. Also [Online] available: http://www.atmel.com/Images/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_Datasheet.pdf
    [88]Schottky Barrier Diode Video Detector, Hewlett-Packard, Application Note 923.
    [89]S. Mollenkopf and G. M. Rebeiz, “A 22 GHz MIC active receiver radiometer,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 3, pp. 1347-1350, May 1994
    [90]V. Milanovic, M. Gaitan, J. C. Marshall and M. E. Zaghloul, “CMOS foundry implementation of Schottky diodes for RF detection,” IEEE Trans. Electron Devices, vol. 43, no. 12, pp. 2210–2214, Dec. 1996.
    [91]S. Sankaran and K. K. O, “Schottky barrier diodes for millimeter wave detection in a foundry CMOS process,” IEEE Electron Devices Lett., vol. 26, no. 7, pp. 492–494, Jul. 2005.
    [92]R. G. Meyer, “Low-power monolithic RF peak detector analysis,” IEEE J. Solid-State Circuits, vol. 30, no. 1, pp. 65–67, Jan. 1995.
    [93]J. Mulder, A.C. van der Woerd, W.A. Serdijn, and A.H.M. van Roermund, “An RMS-DC converter based on the dynamical translinear principle”, IEEE J. Solid-State Circuits, vol. 32, no. 7, pp.1146-1150, Jul. 1997
    [94]K. Kumwachara and V. Surakampontorn, “A dual translinear-based true RMS-to-DC converter”, IEEE Trans. Instrum. Meas., vol. 47, no. 2, pp.459-464, Apr. 1998.
    [95]T. Zhang, W. R. Eisenstadt, R. M. Fox, and Q. Yin, “Bipolar microwave RMS power detectors,” IEEE J. Solid-State Circuits, vol. 41, no. 9, pp. 2188–2192, Sep. 2006.
    [96]S. Ho, “A 450 MHz CMOS RF power detector,” in IEEE RFIC Symp. Dig., May 2001, pp. 209–212.
    [97]Y. Zhou and M. Chia Yan Wah, “A wide band CMOS RF power detector,” in Proc. IEEE Int. Circuits Syst. Symp., May 2006, pp. 4228–4231.
    [98]G. Ferrari, L. Fumagalli, M. Sampietro, E. Prati, and M. Fanciulli, “CMOS fully compatible microwave detector based on MOSFET operating in resistive regime,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 7, pp. 445–447, 2005.
    [99]Y.-C. Huang, H.-H. Hsieh, and L.-H. Lu, “A built-in self-test technique for RF low-noise amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 5, pp. 1035–1042, May 2008.
    [100]Y. Zhou and Y.-W. Chia, “A low-power ultra-wideband CMOS true RMS power detector,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 5, pp. 1035–1042, May. 2008.
    [101]K. Kim and Y. Kwon, “A broadband logarithmic power detector in 0.13-μm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 9, pp. 498–500, Sep. 2013.
    [102]B. François and P. Reynaert, “A fully integrated transformer-coupled power detector with 5 GHz RF PA for WLAN 802.11ac in 40 nm CMOS”, IEEE J. Solid-State Circuits, vol.50, no. 5, pp.1237-1250, May 2015.
    [103]Saeid Daneshgar, Zach Griffith and Mark J. W. Rodwell, “A DC-100 GHz bandwidth and 20.5 dB gain limiting amplifier in 0.25μm InP DHBT technology,” in Proc. of IEEE Compound Semiconductor IC Symposium 2013, pp. 1-4
    [104]H.-C. Kuo, “Research on 60-GHz CMOS Fully-Integrated RF Transceivers for Very-Short-Range Gigabit Millimeter-Wave Wireless Communications and Doppler Radar RF Sensor for Noncontact Human Vital-Signs Detection,” Ph.D. dissertation, Institute of Computer and Communication Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C., 2015.
    [105]A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. T. A. Kovacs, “Range Correlation and I/Q Performance Benefits in Single-Chip Silicon Doppler Radars for Noncontact Cardiopulmonary Monitoring,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 3, pp. 838–848, Mar. 2004.
    [106]H.-H. Hsieh, Y.-H. Chen, and L.-H. Lu, “A millimeter-wave CMOS LC-tank VCO with an admittance-transforming technique,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 9, pp. 1854-1861, Dec. 2007.
    [107]S. K. Cheung, T. P. Halloran, W. H. Weedon, and C. P. Caldwell, “MMIC-based quadrature hybrid quasi-circulators for simultaneous transmit and receive,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 3, pp. 489-497, Mar. 2010.
    [108]H.-C. Kuo, H.-L. Yue, Y.-W. Ou, C.-C. Lin, and H.-R. Chuang, “A 60-GHz CMOS sub-harmonic RF receiver with integrated on-chip artificial-magnetic-conductor Yagi-antenna and balun-bandpass-filter for very-short-range gigabit communications,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1681-1691, Apr. 2013.
    [109]P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2nd ed. Oxford, U.K.: Oxford Univ. Press, 2002.
    [110]J.-W. Wu, K.-C. Hsu, W.-J. Lai, C.-H. To, S.-W. Chen, C.-W. Tang and Y.-Z. Juang, “A linear-in-dB radio-frequency power detector,” in IEEE Int. Microw. Symp. Dig., Jun. 2011, pp. 1–4.
    [111]Lee, Y. Xi, S.-S. Myoung, S. Baek, D.-H. Kwon, Q.-D. Bui, J. Lee, D. Oh and T.-B. Cho, “Wide dynamic-range CMOS RMS power detector,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 3, pp. 868–880, Mar. 2016.
    [112]R. Levinger, O. Katz, B. Sheinman, R. Carmon, R. Ben-Yishay, N. Mazor; S. Pivnik and Danny Elad; E. Socher, “An E-band 40 dB dynamic range multi-tanh power detector in 0.13μm SiGe technology,” in Proc. Eur. Microw. Integr. Circuit Conf., Oct. 6–7, 2014, pp. 170–173.
    [113]A. Serhan, Estelle Lauga-Larroze and J.-M. Fournier, “Common-base/common-gate millimeter-wave power detectors,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 12, pp. 4483–4491, Dec. 2015.

    下載圖示 校內:2024-08-15公開
    校外:2024-08-15公開
    QR CODE