| 研究生: |
盧一心 Ernawati, Lusi |
|---|---|
| 論文名稱: |
含銀甲殼素奈米複合材之製備及特性探討 Fabrication and Characterization of Silver-Chitosan Nanocomposites |
| 指導教授: |
劉瑞祥
Liu, Jui-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 甲殼素 、奈米粒子 、奈米複合物 、奈米結構 、光學性質 |
| 外文關鍵詞: | chitosan, nanoparticles, nanocomposites, nanostructural, optical |
| 相關次數: | 點閱:73 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本研究利用甲殼素(chitosan)吸附金屬離子之能力吸附銀離子(AgNO3),以硼氫化鈉(NaBH4)為還原劑來製備銀-甲殼素奈米複合材料,藉由POM、SEM、TEM、AFM、UV-Vis等儀器,分析銀-甲殼素奈米複合材料其物化性質。本研究發現,不同濃度的銀離子分散於甲殼素中,在還原之後可以得到紡錘形與羽毛形的自組裝結構。由於其規則性排列,於POM下觀察此結構具有複折射性質(birefringence)。進一步利用SEM、TEM、AFM來觀察還原不同濃度的銀離子時所得到奈米複合物的結構大小。結果顯示,奈米複材的大小會隨著AgNO3濃度增加而有變大的趨勢,隨著靜置時間的增長,藉由TEM與UV-Vis可以觀察到銀奈米粒子的存在。由於奈米銀粒子與銀-甲殼素奈米複合材料具有交互作用力,在SEM下可以觀察到,部分奈米銀粒子會附著於奈米複材上而形成特定的自組裝結構。在應用方面,銀-甲殼素奈米複合材料可被應用於非線性光學的組件以及生物醫學上。
關鍵字:甲殼素、奈米粒子、奈米複合物、奈米結構、光學性質。
ABSTRACT
The main objective of the present investigation deals with the synthesis and characterization of silver-chitosan nanocomposites. Silver-chitosan nanocomposites were prepared by the reducing of silver ions in the presence of chitosan. The optical and morphological properties of the synthesized nanocomposites were studied using polarized optical microscopy (POM), UV-vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The morphological properties studied by POM reveals that silver-chitosan nanocomposites exhibited the spindle like self-assembled structure which is entirely different from the pure chitosan alone. These morphological properties were further confirmedusing SEM and AFM analysis. All the results show the similar morphology, and the size of the nanoparticles increases with increasing of silver salt concentration (AgNO3). This indicates that formation of nanocomposites and controlling of particle size mainly depend on the concentration of Ag used. Transmission electron microscopy (TEM) images and UV–vis spectra of the nanocomposites support the presence of silver nanoparticles. From the above optical and morphological studies, it was found that the formation of silver cluster plays an important role assiginificant interaction with chitosan composites forming some specific self-assembled constructions. Balance of internal and external forces of matrices shows the final construction. Such kind of combinations of silver with chitosan in composites system is expected to be applied in non-linear optics and biomedical applications.
Keywords: chitosan, nanoparticles, nanocomposites, nanostructural, optical
REFERENCES
1. Song J.Y., Kim B.S., Bioproc. Biosyst. Eng., 2009, 32, pp. 79–84
2. Panigrahi S., Kundu S., Ghosh S.K., Nath S., Pal T. J. Nanoparticle. Res., 2004, 6, pp.411-414
3. Khaydarov R.A., Khaydarov R.R., Gapurowa. O.,Estrin Y.,Scheper T. J. Nanoparticle. Res., 2009, 11, pp. 1193-1200
4. Chen D., Qiao X., Qiu X. J. Mater. Science., 2009, 44, pp. 1076-1081
5. Zhang W., Qiao X., Chen . J. Mater. Sci. Eng., 2007, 142, pp. 1-15
6. Martinez. Castanon G.A.,Nin. O.Martınez N.,Martinez. Gutierrez.F.,Martinez Mendoza ,I.R., Ruiz F., J. Nanoparticle Res., 2008, 10, pp. 1343-1348
7. Rai M., Yadav A., Gade.A., Biotechnol. Adv., 2009, 27, pp. 76-83
8. Song K.C., Lee S.M., Park T.S., Lee B.S., Korean J.Chem. Eng., 2009, 26, pp. 153-155.
9. Goia D.V., Matijevic´ E. New J.Chem., 1998, 98, pp. 1203-1215
10. Jiang G., Wang L., Chen T.,Yu H.,Wang.J., J.Mater. Sci., 2005, 40, pp. 1681-1683
11. Nath N., Chilkoti A.,J. Fluorescense., 2004, 14, pp. 377–389
12. Tolaymata T.M., El Badawyb A.M., Genaidyc. A., Scheckela K.G., Luxtona T.P.,
Suidan. M., J. Sci. Total. Environt., 2010, 408, pp. 999–1006.
13. Sondi I., Salopek-Sondi B.; J. Colloid and Interface Sci., 2004, 275 pp. 177-182.
14. Ruparelia J. P., Chatterjee A. K., Dutta Gupta S.P., Mukherji S.; Acta Biomaterial., 2008, 4, 3, pp. 707-716.
15. Thomas V., Yallapu M. M., Sreedhar B., Bajpai S. K., J.Colloids. Interf. Sci., 2007, 315, 1, pp. 389-395.
16. Dubas S.T., Kumlangdudsana P., Potiyaraj P., J. Intern. Colloids. Surf., A: Physics and Eng Aspects., 2006, 289, 1-3, pp. 105-109.
17. Shi Z., Neoh K. G., Kang E. T., Wang W., Biomaterials., 2006, 27, 11, pp. 2440.
18. Huang N. M., Radiman S., Lim H. N., Khiew P. S.,Chiu W. S., Lee K. H., Syahida, A.,Hashim R., J.Chem-Eng., 155, No. 1-2, December. 2009, pp. 499-507.
19. Yoksan R., Chirachanchai S., J. Mater. Chemist. Physics., 2009,115, 1,pp. 296-302.
20. Shin H. S.,Yang H. J., Bin Kim S., Lee.M. S., J. Colloids. Interf. Sci.,2004, 274, pp. 89-94.
21. Chou K.-S., Ren Ch. Y., J.Mater.Chemist. Physics., 2000, 64 pp. 241-246.
22. Pillai V., Kumar P., Hou M. Ayyub P.,Shah D.O., J. Adv. colloid. Interf.Sci., 1995 , 55, pp. 241-269.
23. Zhang W., Qiao X.,Chen J.,Wang. H., J.Colloid. Interf. Sci., 2006, 302, pp. 370-373.
24. Kapoor S., Langmuir.,1998 14, pp. 1021-1025.
25. Andersson M., Alfredsson V., Kjellin P., Palmqvist A. E.C., Nano Letters., 2002, 2, 12, pp. 1403-1407.
26. Ghosh S. K., Kundu S., Pal T., Bull. Mater. Sci.,2002, 25, 6, pp. 581-582.
27. Gedanken A.,J. Curnt. Sci., 2003, 85, p. 12.
28. Lopez-Quintela M. A., J. Curnt. Opn. Colloid. Interf. Sci., 2003,8, Pp, 137-144.
29. G.L. Clark, A.F. Smith., J. Phys. Chem.,1986, 40,7, 863.
30. K. Ogawa, Agric,.J. Biol. Chem., 1999, 51,9- 2375.
31. N. Cartier, A. Domard, H. Chanzy., Int. J. Biol. Macromol., 1999, 12, 289.
32. R.J. Samuels., J. Polym. Sci. Polym. Phys., Ed., 1981, 19, 1081.
33. E. Belamie, A. Domard, H. Chanzy, M. Giraud-Guille., Langmuir.,1999,15, 1549.
34. H. Huang, N. Hu, Y. Zeng, G. Zhou., Anal. Biochem., 2002, 308,141.
35. Y. Dong, Q. Yuan, Y. Wu, J. Wang, M. Wang., Polym. J. 2000,32, 326.
36. Y. Dong, K. Sakurai, Y. Wu, Y. Kondo., J. Polym. Sci. Polym.Phys.,2003, 41.
37. K. Esumi, N. Takei, T. Yoshimura, J.Colloids.Surf. B. Biointerf., 2003, 3,117
38. J. Zeng, M.S. Stevenson, R.S. Hikida, P.G. Van Patten., J. Phys. Chem.,2002, 106, 1252.
39. M. Zhao, R.M. Crook, Angew., Chem. Int. Ed., 1999, 38, 364.
40. F. Grohn, G. Kim, B.J. Bauer, E., J. Macromolecules.,2001, 34, 2179.
41. H. Ye, R.W.J. Scott, R.M. Crooks., Langmuir., 2004, 20, (7), 2915.
42. K. Esumi, H. Houdatsu, T. Yoshimura., Langmuir., 2004, 20,(7), 2536.
43. Z.H. Mbhele, M.G. Salemane, C.G.C.E. Van Sittert, J.M. Nedeljkovic,V. Djokovic,
A.S. Luyt., Chem. Mater., 2003, 15 ,5019.
44. H.M. Xiong, X. Zhao, J.S. Chen., J. Phys. Chem.,2001, B. 105,10169.
45. A. Dufresnea,J.Y. Cavaillea, D. Dupeyea, M.G. Ramirezb., J.Polym.,1999,40,(7): 1657.
46. H.Y. Kweon, I.C. Um, Y.H. Park., J. Polym., 2001, 42 ,(15): 6651.
47. Mandal, T.K., Fleming, M. S.,Walt. D.R., Nano. Lett., 2002, 2, 3-7.
48. Corbierre, M. K., Cameron, N. S.; Sutton, M.; Mochrie, S. G. J.; Lurio, L. B.; Ruhm, A. Lennox, R. B., J. Am.Chem. Soc.,2001, 123, 10411-10412.
49. Clark GL, Smith AF., J. Phys Chem., 1937, 40, 863–879.
50. Ogawa K, Yui., Biosci.Biotech-Biochem.,1993, 57,1466 -1469
51. Cartier N, Domard A, Chanzy H., Int. J. Biol.Macromol.,1990,vol.12,290-294.
52. Ogawa K, Oka K., J. Chem. Mater., 1993,5,726-728.
53. Ogawa K., J. Chem Mater., 1996, 8, 2349-2351.
54. Samuels, R. J., J. Polym. Sci., Polym. Phys. Ed. 1981, 19, 1081-105.
55. Belamie E, Domard,A, Henri Chanzy,H., Langmuir., 1999, 15, 1549-1555.
56. Roth C, Martz N, Fuess H., J. Chem. Phys., 2001, 3, 315-319.
57. Lin Y, Cui X, Yen C, Wai CM., J. Phys Chem.,2005, B 109: 14410-14415.
58. Wang Y, Li Y, Yang S, Zhang G, An D, Ce, Wang A, Yang Q, Chen X, Jing X, Wei Y., Nanotechnology.,2006, (17): 3304-3307.
59. Nadagouda MN, Varma RS., Macromol. Rapid. Commun.,2007,28: 465-472
60. Kaittanis C, Nath S, Perez J.M., Polym.J., 2008, 3, (9): 3210.1371.0003253.
61. Qi, L., Z. Xu, X. Jiang, C. Hu and X. Zou.,J.Carbohydrate Research.,2004, 339,(16): 2693-2700.
62. Li, Q., S. Mahendra, D. Y. Lyon., L. Brunet., M. V. Liga., D. Li and P. J. J. Alvarez., J.Water Research.,2008, 42,(18): 4591-4602.
63. Du, Y., X. L. Luo, J. J. Xu and H. Y. Chen., J.Bioelectrochemistry.,2007, 70(2):342-347.
64. Weir, E., A. Lawlor, A. Whelan and F. Regan., J.Analyst.,2008,133, (7):835-845.
65. Zhang, L., F. X. Gu, J. M. Chan, A. Z. Wang, R. S. Langer and O. C. Farokhzad., J.Clinical Pharm. Therapeutics., 2008, 83(5):761-769.
66. Zhang, L., D. Porn.C. M. J. Hu and C. M. Huang., J.Current Medc. Chemist.,2010, 17,(6): 585-594.
67. Davis, M. E., Z. Chen and D. M. Shin., J.Nature.Revw.Drug Discv.,2008, 7,(9):771-782.
68. Tharanathan, R.N., Srinivasa,P.C., Ramesh, M.N.,J.Indian.Patent.,2002,85.
69. Huang, C. Y., S. P. Hsieh, P. A. Kuo, W. N. Jane, J. Tu, Y. N. Wang and C. H. Ko., J.Inter.Biodeteriont. Biodegrad.,2009, 63(8): 998-1007.
70. Davies, D. G., M. R. Parsek, J. P. Pearson, B. H. Iglewski, J. W. Costerton and E. P. Greenberg., J.Mater. Sci.,1998, 280(5361): 295-298.
71. Decho, A. W.,J. Ecological.Eng.,2010,36(2): 137-144.
72. Simoes, M., L. C. Simoes and M. J. Vieira.,J. Food Sci. Techn.,2010, 43(4): 573-583.
73. Melo, L. F.,The Handbook of Water and Wastewater Microbiology.,2003, London, UK, Academic Presspp. 337-349.
74. Simoes, M., L. C. Simoes and M. J. Vieira., J. Food Sci.Techn.,2010, 43(4): 573-583.
75. Manuel, C. M., O. C. Nunes and L. F. Melo., J. Biofouling.,2010, 26(2): 129-139.
76. Shannon, M. A., P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marĩas and A. M. Mayes., J. Nature., 2008, 452(7185): 301-310.
77. Ferreira, C., R. Rosmaninho, M. Simoes, M. C. Pereira, M. M. S. M. Bastos, O. C. Nunes, M. Coelho and L. F. Melo., J.Bioadhesion-Biofilm Research.,2010, 26(2): 205-212.
78. Melo, L. F. and H. C., In: The Science and Technology of Industrial Water Treatment.,2010, A.Z. Florida, U.S.A. , Talyor and Francis Group.
79. Novoselov K S, Jiang D, Schedin F, et al., J. Proc Natl Acad., Sci USA, 2005, 102: 10451-10453.
80. T. Tanabe, N. Okitsu, A. Tachibana, K. Yamauchi., J. Biomaterials.,2002, 23, 817.
81. M. Zhang, X.H. Li, Y.D. Gong, N.M. Zhao, X.F. Zhang., J. Biomaterials ., 2002,23 2641.
82. E. Belamie, A. Domard, H. Chanzy, M. Giraud-Guille., Langmuir., 1999,15, 1549.
83. H. Huang, N. Hu, Y. Zeng, G. Zhou, Anal., J. Biochem., 2002, 308141.
84. Y. Dong, Q. Yuan, Y. Wu, J. Wang, M. Wang., Polym. J., 2000,32, 326.
85. Y. Dong, K. Sakurai, Y. Wu, Y. Kondo., J. Polym. Sci. Polym.Phys.,2003, 41,2033.
86. K. Esumi, N. Takei, T. Yoshimura., J. Colloids. Surf. B. Biointerf., 2003, 32, 117.
87. J.Y. Tseng, M.H. Lin, L.K.Chau., J.Colloids. Surf. A. Physico-chem. Eng. Aspects., 2001,182 - 239.
88. B.P. Grady, F. Pompeo, R.L. Shambaugh, D.E. Resasco., J. Phys. Chem., 2002, B 106 (23): 5852.
89. E. Vedejs, Y. Donde., J. Org. Chem., 2000, 65 ,(8): 2337.
90. K. Inomata, L.-Z. Liu, T. Nose, B. Chu., J. Macromolecules., 1999, 32, 1554.
91. J. Foks, M. Luszczek., J. Cryst. Growth., 1995, 134, 347.
92. I. Hussain, M. Brust, A.J. Papworth, A.I. Cooper., Langmuir., 2003, 19, 4831.
93. R.V. Kumar, R. Elgamiel, Y. Diamant, A. Gedanken., Langmuir .,2001, 17, 1406.
94. D. Sajinovic, Z.V. Saponjic, N. Cvjeticanin, M. Marinovic-Cincovic, J.M. Nedeljkovic., J. Chem. Phys. Lett., 2000, 329 ,168.
95. V. Djokovic, J.M. Nedeljkovic., Macromol. Rapid Commun.,2000, 21, 994.
96. R.V. Kumar, Y. Koltypin, Y.S. Cohen, D. Aurbach, O. Palchik, I. Felner, A. Gedanken., J. Mater. Chem.,2000,10, 1125.
97. S.H. Yu, M. Yoshimura, J.M.C. Moreno, T. Fujiwara, T. Fujino, R. Teranishi., Langmuir.,2000, 17, 1700.
98. D.W. Oxtoby, A. Laaksonen, T. Vincente., Annu. Rev. Phys.Chemst.,1995. 46: 489-524 .