簡易檢索 / 詳目顯示

研究生: 連弘憲
Lian, Hung-Hsien
論文名稱: 風浪模式透水底床效應之研究
The Effect of Porous Bed on Wind Wave Model
指導教授: 許泰文
Hsu, Tai-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 53
中文關鍵詞: 風浪模式相位平均透水底床緩坡方程式波高減衰
外文關鍵詞: Wind Wave Model, Phase – average, Porous bed, Mild-Slope Equation, Wave decay
相關次數: 點閱:208下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前風浪數值模式中的相位平均模式無法描述波浪受透水底床效應的影響。為了加強模式應用功能,本文以 Hsu等人 (2005) 提出之WWM (Wind Wave model) 風浪模式為基礎,同時參考Rojanankmthron 等人 (1990) 所提出透水介質之緩坡方程式數值模式,同時引用Isobe (1987) 處理波浪消散之方法,在WWM 動量平衡方程式 (action density equation) 中加入透水底床效應能量消散係數,並用以描述風浪模式考慮透水底床效應的影響。本文以兩種透水底床實驗配置進行模式驗證,同時探討不規則波浪在不同情況下的減衰率係數的變化。本文同時利用台灣西部海域五個代表性近岸淺水區域來分析考慮透水底床效應的影響,由數值計算結果發現,在台灣西部近岸 (水深小於10公尺) 波浪受透水底床效應影響時造成波高減衰。

    The current phase-average wind wave model (WWM) does not include the effect of porous bed on wave energy dissipation. To enhance the model practical applications, the present thesis incorporates the dissipation coefficient for porous bed in the action density equation of WWM model. The coefficient is obtained from the analysis mild-slope equation proposed by Rojanankmthron et al. (1990), and imitated Isobe (1987) method to add the effect of porous bed in the WWM model. Two tests were performed to validate the model skills. Wave decay due to variations of different parameters was investigated. Five typical real sites were investigated using the present model. Numerical result show that the wave decayed by the effect of porous bed in the west near shore (depths less 10 meters) of Taiwan.

    中文摘要 I ABSTRACT II 誌謝 VI 表目錄 IX 圖目錄 X 符號說明 XII 第一章 緒論 1 1-1 研究動機與目的 1 1-2 前人研究 2 1-3 本文組織 5 第二章 理論解析 6 2-1 WWM風浪模式 6 2-2 透水底床效應 8 2-2-1 緩坡方程式 8 2-2-2 考慮透水效應緩坡方程式 9 2-2-3 透水底床效應參數 11 第三章 模式驗證與討論 15 3-1 模式驗證 15 3-1-1 Savage 實驗之比較 15 3-1-2 Sawargi and Deguchi 實驗之比較 16 3-1-3 綜合討稐 17 3-2 規則波與不規則波差異 18 3-3 不規則波減衰率係數與影響因素關係 22 3-3-1 減衰率係數與波浪條件之關係 22 3-3-2 減衰率係數與透水層厚度之關係 25 3-3-3 減衰率係數與孔隙率、滲透係數之關係 27 3-3-4 減衰率係數與Ursell Number之關係 32 第四章 實例計算 34 4-1 模式輸入資料 34 4-1-1 風場處理 34 4-1-2 格網設定 38 4-2 模式計算結果 40 第五章 結論與建議 46 5-1 結論 46 5-2 建議 47 參考文獻 48

    1. Barr, D.W. Turbulent flow through porous media. Ground Water 39, 646-650 (2001)
    2. Battjes, J. and Janssen, J. Energy loss and set-up due to breaking of random waves. Coastal Engineering Proceedings 1 (1978)
    3. Biot, M. Theory of Propagation of Elastic Waves in a Fluid‐Saturated Porous Solid. I. Low‐Frequency Range. The Journal of the Acoustical Society of America 28, 168-178 (1956)
    4. Biot, M.A. Theory of propagation of elastic waves in a fluid‐saturated porous solid. II. Higher frequency range. The Journal of the Acoustical Society of America 28, 179-191 (2005)
    5. Booij, N., Ris, R., and Holthuijsen, L. A third‐generation wave model for coastal regions: 2. Verification. Journal of Geophysical Research: Oceans (1978–2012) 104, 7667-7681 (1999a)
    6. Booij, N., Ris, R., and Holthuijsen, L.H. A third‐generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research: Oceans (1978–2012) 104, 7649-7666 (1999b)
    7. Bretschneider, C.L. The generation and decay of wind waves in deep water. Transactions, American Geophysical Union 33, 381-389 (1952)
    8. Bretherton, F. and Garrett, C. Wavetrains in inhomogeneous moving media. In Proc. Roy. Soc. of London, pp. 529-554 (1968)
    9. Chang, H.-H., Interaction of water waves and submerged permeable offshore structures. Ph. D. thesis, The National Cheng Kung University, Taiwan (2004)
    10. Chen, H.-B., Tsai, C.-P., and Chiu, J.-R. Wave reflection from vertical breakwater with porous structure. Ocean engineering 33, 1705-1717 (2006)
    11. Dalrymple, R.A., Losada, M.A., and Martin, P. Reflection and transmission from porous structures under oblique wave attack. Journal of Fluid Mechanics 224, 625-644 (1991)
    12. Darcy, H., Darcy, H., and Darcy, H. Les fontaines publiques de la ville de Dijon. (1856)
    13. Eldeberky, Y. and Battjes, J. Parameterization of triad interactions in wave energy models. Proceedings of Coastal Dynamics Conference ’95, 140-148 (1995)
    14. Furukawa, K. Wave diffraction due to trenches and rubble. (1991)
    15. Group, T.W. The WAM model-a third generation ocean wave prediction model. Journal of Physical Oceanography 18, 1775-1810 (1988)
    16. Hsu, J., Jeng, D., and Tsai, C. Short‐crested wave‐induced soil response in a porous seabed of infinite thickness. International Journal for Numerical and Analytical Methods in Geomechanics 17, 553-576 (1993)
    17. Hsu, T.-W., et al. A parabolic equation for wave propagation over porous structures. Coastal Engineering 55, 1148-1158 (2008)
    18. Hsu, t.-W. and Wen C.-C. A study of using parabolic model to describe wave breaking and wide-angle wave incidence. Journal of the Chinese Institute of Engineers 23, 515-527 (2000)
    19. Hsu, T.-W., Ou, S.-H., and Liau, J.-M. Hindcasting nearshore wind waves using a FEM code for SWAN. Coastal Engineering 52, 177-195 (2005)
    20. Isobe, M. A parabolic equation model for transformation of irregular waves due to refraction, diffraction and breaking. Coastal Engineering in Japan 30, 33-47 (1987)
    21. Karunarathna, S.A.S.A. and Lin, P. Numerical simulation of wave damping over porous seabeds. Coastal Engineering 53, 845-855 (2006)
    22. Lan, Y.-J. and Lee, J.-F. On waves propagating over a submerged poro-elastic structure. Ocean Engineering 37, 705-717 (2010)
    23. Lee, J.-F. and Lan, Y.-J. On waves propagating over poro-elastic seabed. Ocean engineering 29, 931-946 (2002)
    24. Liu, P.L. Damping of water waves over porous bed. Journal of the Hydraulics Division 99, 2263-2271 (1973)
    25. Losada, I., Silva, R., and Losada, M. Interaction of non-breaking directional random waves with submerged breakwaters. Coastal Engineering 28, 249-266 (1996)
    26. Losada, I., Silva, R., and Losada, M. 3-D non-breaking regular wave interaction with submerged breakwaters. Coastal Engineering 28, 229-248 (1996)
    27. Madsen, O.S. Wave transmission through porous structures. Journal of the Waterways, Harbors and Coastal Engineering Division 100, 169-188 (1974)
    28. Méndez, F.J., Losada, I.J., and Losada, M.A. Wave-induced mean magnitudes in permeable submerged breakwaters. Journal of waterway, port, coastal, and ocean engineering 127, 7-15 (2001)
    29. Pierson, W. J., Neumann G. and Jams R. W. Practical method for observing and forecasting ocean waves by means of wave spectra and statics. U. S. Department of the Navy Hydrographic Office Bulletin 603, 284 (1955)
    30. Putnam, J. Loss of wave energy due to percolation in a permeable sea bottom. Transactions, American Geophysical Union 30, 349-356 (1949)
    31. Reid, R.O. and Kajiura, K. On the damping of gravity waves over a permeable sea bed. Transactions, American Geophysical Union 38, 662-666 (1957)
    32. Rojanakamthorn, S., Isobe, M., and Watanabe, A. Modeling of wave transformation on submerged breakwater. Coastal Engineering Proceedings 1 (1990)
    33. Savage, R.P. and Fairchild, J.C. Laboratory study of wave energy losses by bottom friction and percolation. DTIC Document (1953)
    34. Sawaragi, T. and Deguchi, I. Waves on permeable layers. Coastal Engineering Proceedings 1 (1992)
    35. Silva, R., Govaere, G., and Salles, P. Wave interaction with cylindrical porous piles. Ocean Engineering 30, 1719-1740 (2003)
    36. Silva, R., Losada, M., and Salles, P. Modelling linear wave transformation induced by dissipative structures—Random waves. Ocean engineering 33, 2174-2194 (2006)
    37. Silva, R., Mendoza, E., and Losada, M. Modelling linear wave transformation induced by dissipative structures—Regular waves. Ocean engineering 33, 2150-2173 (2006)
    38. Silva, R., Salles, P., and Palacio, A. Linear waves propagating over a rapidly varying finite porous bed. Coastal Engineering 44, 239-260 (2002)
    39. Sleath, J.F. Wave-induced pressures in beds of sand. Journal of the Hydraulics Division 96, 367-378 (1970)
    40. Sollitt, C.K. and Cross, R.H. Wave transmission through permeable breakwaters. Coastal Engineering Proceedings 1 (1972)
    41. Sverdrup, H. U. and Munk, W. H., Wind, Sea and swell, Theory of relation for forecasting. Department of the Navy Hydrographic Office Washington, D. C., Publiction 601, 44 (1947)
    42. Tolman, H.L. User manual and system documentation of WAVEWATCH III TM version 3.14. Technical note, MMAB Contribution (2009)
    43. Tsai, C. Wave-induced liquefaction potential in a porous seabed in front of a breakwater. Ocean Engineering 22, 1-18 (1995)
    44. Tsai, C.-P., Chen, H.-B., and Jeng, D.-S. Wave attenuation over a rigid porous medium on a sandy seabed. Journal of engineering mechanics 135, 1295-1304 (2009)
    45. Tsai, C.-P., Chen, H.-B., and Lee, F.-C. Wave transformation over submerged permeable breakwater on porous bottom. Ocean engineering 33, 1623-1643 (2006)
    46. Tsai, C.-P. and Lee, T.-L. Standing wave induced pore pressures in a porous seabed. Ocean engineering 22, 505-517 (1995)
    47. U. S. Army Corps of engineers, Shore protection manual. Coastal Engineering Reasearch Center, U.S. Government Printing Office (1984)
    48. Willebrand, J. Energy transport in a nonlinear and inhomogeneous random graviety wave field. Journal of Fluid Mechanics 70, 113-126 (1975)
    49. Yamamoto, T., et al. On the response of a poro-elastic bed to water waves. Journal of Fluid Mechanics 87, 193-206 (1978)
    50. 林朝福、何獻崇,孔隙底床波浪減衰之試驗研究,第十九屆海洋工程演討論文集,第407-423頁 (1995)
    51. 蔡清標、陳鴻斌、李芳君,波浪通過斜坡孔隙底床上透水式潛堤之解析,第二十三屆海洋工程演討論文集,第257-264頁 (2001)
    52. 蔡清標、陳鴻斌,斜坡孔隙彈性介質上波浪變形之研究,第二十四屆海洋工程演討論文集,第641-647頁 (2002)
    53. 張人懿,演進型緩坡方程式應用於波浪大角度入射透水介質之研究,國立成功大學水利及海洋工程研究所碩士論文 (2004)
    54. 張人懿,利用含虛擬時間積分法之緩坡方程式模擬波浪通過透水結構物之變形,國立成功大學水利及海洋工程研究所博士論文 (2010)
    55. 楊秉霖,WWMII 模式中不同碎波消散項堆週期之影響,國立成功大學水利及海洋工程研究所碩士論文 (2010)
    56. 黃郁軒,島嶼周邊透水底床上之波浪運動,國立成功大學水利及海洋工程研究所碩士論文 (2011)
    57. 張友齊,應用WWM風浪模式推估台灣環島波能之研究,國立成功大學水利及海洋工程研究所碩士論文 (2013)

    下載圖示 校內:2016-07-28公開
    校外:2017-07-28公開
    QR CODE