簡易檢索 / 詳目顯示

研究生: 蔡昕璋
Tsai, Hsin-Chang
論文名稱: 以黏性電洞傳輸層之層壓法製備有機多層太陽能電池
Fabrication of Tandem Organic Solar Cells by Lamination Method with Sticky Hole Transport Layer
指導教授: 高騏
Gau, Chie
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 96
中文關鍵詞: 多層有機太陽能電池黏性電洞傳輸層層壓法中間層
外文關鍵詞: tandem organic solar cell, sticky hole transport layer, lamination, intermediate layer
相關次數: 點閱:141下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以探討層壓法製備反置型有機太陽能電池為目的,改進製程,首先是太陽能電池的材料選擇,以P3HT與ICBA作為下層材料及低能隙材料PSBTBT與PCBM作為上層,藉由串聯兩主動層以吸收不同光波段,達成單位面積上光轉換效率的提升。接著進行多層太陽能電池的元件製備,其中中間層之影響至關重要,本文中採用PEDOT:PSS PH1000與ZnO作為中間層材料,PH1000使用DMSO調整其電性,在後期的層壓法中採用再進一步添加D-sorbitol去調整其黏性;ZnO則採用較低的濃度使其嵌入電洞傳輸層之裂隙形成一保護層,最後再進行可行性測試,此處發現UVA光的照射對於中間層有相當大的影響,由於UVA使ZnO產生氧原子再復合的結果,改善其晶格也提升載子濃度,提升中間層的特性。
    層壓法的目的除了縮短製程時間也避免兩主動層在典型旋塗製程中,重複地曝露於大氣中使主動層劣化或是肉眼不可見的溶劑影響,製程最後將兩試片置於以5×10-3torr與150℃以下之環境進行層壓法黏合,但由於分開製作兩太陽能電池,其製程方向完全相反,而材料親疏水性不匹配,金屬電極必須使用氧電漿調整親疏水性,則將銀電極轉換成金電極,於此產生反射光波段不同的差異,使光捕捉效應下降,可以預見短路電流密度的降低。
    本文中除了成功製備典型旋塗製程的反置型多層有機太陽能電池,也成功將黏性電洞傳輸層應用於層壓法,製備出層壓法之多層有機太陽能電池,根據填充因子的提升,其效率相差無幾。

    The objective of this thesis is to present fabrication of inverted tandem organic solar cells by a lamination process. The tandem structure of the solar cell fabricated with the front cell made of P3HT:ICBA and the rear cell made of low band gap materials of PSBTBT:PCBM. Each of the cells can be fabricated separately at the same time so that not only the entire fabrication duration can be significantly reduced, but also fabrication of the top cell will not affect or even attack the bottom cell due to the use of the same solvents. After completed fabrication of both the front and the rear cell the two cells can be hot impressed together in a vacuum at 5×10-3 torr with a temperature less than 150°C.The hole transport layer used in the front cell is PEDOT:PSS PH1000 that was modified by adding both D-sorbitol to increase the stickiness and the DMSO to increase conductivity. The selection of ZnO together with PEDOT:PSS PH1000 as IML can form a good protection for the bottom cell during fabrication of the top cell. In addition, the ZnO of the IML should be irradiated with UVA light and exposed in air to increase the carrier concentration, and demonstrate a good characteristic of contact with the hole transport layer. The tandem OSCs by lamination process exhibit the Voc of 1.43, the Jsc of 6.725mA/cm2, the FF of 0.572 and the PCE of 5.5%.

    口試合格證明 摘 要 誌 謝 目 錄 I 圖目錄 VI 第一章 有機太陽能電池緒論 1 1.1前言 1 1.2有機太陽能電池現況 1 1.2.1太陽能電池世代 1 1.2.2有機太陽能電池 4 1.2.3多層太陽能電池 6 1.3研究動機 8 1.4太陽能電池原理 10 1.5太陽能電池參數 12 1.5.1開路電壓(Open-circuit voltage) 12 1.5.2短路電流密度(Short-circuit current density) 12 1.5.3填充因子(Fill factor) 13 1.5.4轉換效率(Power conversion efficiency) 13 1.6有機太陽能電池結構 13 1.7多層太陽能電池設計 15 1.8多層太陽能電池層壓法 16 第二章 材料選擇及文獻回顧 19 2.1電子傳輸層(Electron Transport Layer) 19 2.1.1氧化鋅(ZnO) 19 2.1.2氧化鈦(TiOx) 20 2.2電洞傳輸層(Hole Transport Layer) 21 2.3摻混主動層材料(Blend Active Layer Material) 22 2.3.1 MEH-PPV及MDMO-PPV 22 2.3.2 P3HT 22 2.3.3 PCDTBT 23 2.3.4 PSBTBT 23 2.3.5 PTB7 24 2.3.6 PC61BM 24 2.3.7 PC71BM 24 2.3.8 ICBA 25 2.4摻混 25 2.5中間層(Intermediate Layer) 26 2.6電極 28 第三章 實驗方法及步驟 29 3.1實驗材料 29 3.1.1基板材料 29 3.1.2電子傳輸層材料 29 3.1.3電洞傳輸層材料 30 3.1.4主動層材料 30 3.1.5有機溶劑材料 32 3.1.6其他材料 33 3.2實驗設備 34 3.3實驗製程 36 3.3.1前置作業 36 3.3.2單一元件製備 39 3.3.3典型多層太陽能電池製備 41 3.3.4以層壓法製備多層太陽能電池製備 44 3.3.5實驗量測 46 第四章 實驗結果與討論 48 4.1前言 48 4.2 P3HT與PCBM摻混主動層 48 4.2.1主動層之光電轉換效率 49 4.3 P3HT與ICBA摻混主動層測試 49 4.3.1主動層之光電轉換效率 49 4.4 PSBTBT與PCBM摻混主動層測試 50 4.4.1主動層之光電轉換效率 50 4.5 PSBTBT與PC71BM摻混主動層測試 51 4.5.1主動層之光電轉換效率 51 4.6中間層結構 51 4.6.1電子與電洞傳輸層之旋塗 51 4.6.2中間層之曲線量測測試 52 4.6.3可行性量測 52 4.7典型多層太陽能電池之量測 53 4.7.1典型多層太陽能電池之光電轉換效率量測 54 4.7.2典型多層太陽能電池之光吸收量測 54 4.7.2典型多層太陽能電池之外部量子效率量測 54 4.8以層壓法製備多層太陽能電池之量測 55 4.8.1以層壓法製備多層太陽能電池之光電轉換效率量測 55 4.9掃描式與穿透式電子顯微鏡分析 55 第五章 結論 57 參考文獻 59 圖1-1 太陽能世代演進 72 圖1-2 太陽能光譜圖 72 圖1-3 本文之太陽能結構圖 73 圖1-4 電子電洞對分離與傳遞 73 圖1-5 各參數位置 74 圖1-6 本文太陽能電池之能階圖 74 圖1-7 中間層說明圖 75 圖2-1各材料結構圖......................................................................................75 圖2-2各材料結構圖 76 圖3-1 圖案化ITO與金屬電極作為工作面積..............................................76 圖3-2圖案定義與試片清洗流程 77 圖3-3 單一元件製備程序 78 圖3-4 P3HT摻混ICBA主動層(左)與PSBTBT主動層(右) 78 圖3-5 多層太陽能電池製備程序 79 圖3-6上、下層太陽能電池製備程序 80 圖3-7 前後分別旋塗PH1000(左)與ZnO(右)薄膜情形 81 圖3-8 旋塗PSBTBT摻混PCBM主動層(左)與底層主動層(右)比較 81 圖3-9 旋塗AL4083電動傳輸層(左)與底層主動層(右)比較 82 圖3-10 蒸鍍銀電極以完成元件 82 圖3-11 PSBTBT摻混PCBM主動層旋塗於AL4083(左)與ZnO(右)比較 83 圖3-12 以層壓法製備多層太陽能電池正反面示意圖 83 圖3-13 以層壓法製備多層太陽能電池之側面示意圖 83 圖4-1 P3HT摻混PCBM主動層於ZnO濃度變化之元件測試....................84 圖4-2 P3HT摻混ICBA主動層於轉速變化之元件測試 84 圖4-3 P3HT摻混ICBA主動層於ZnO濃度變化之元件測試 85 圖4-4 PSBTBT摻混PCBM主動層於轉速變化之元件測試 85 圖4-5 PSBTBT摻混PCBM主動層於濃度變化之元件測試 86 圖4-6 PSBTBT摻混PCBM主動層於二碘辛烷添加與否之元件測試 86 圖4-7 PSBTBT摻混PCBM主動層於退火時間變化之元件測試 87 圖4-8 PSBTBT摻混PCBM主動層於靜置溫度變化之元件測試 87 圖4-9 PSBTBT摻混PCBM與PC71BM差異之元件測試 88 圖4- 10添加0.5G山梨糖醇之電洞傳輸層於不同轉速下旋塗情形 88 圖4- 11 添加0.1G山梨糖醇之電洞傳輸層於不同轉速下旋塗情形 89 圖4- 12 電洞傳輸層用以層壓黏合兩玻璃片 89 圖4- 13 以負重(300G)嘗試分離兩玻璃片(0.6G) 89 圖4- 14 中間層照射UVA光與電阻之曲線量測 90 圖4- 15 中間層可行性量測使用之結構 90 圖4- 16 中間層可行性量測之元件測試 91 圖4- 17 初期P3HT摻混PCBM主動層作為多層太陽能電池之元件量測 91 圖4-18 修正中間層及材料之多層太陽能電池元件量測 92 圖4-19 最佳化多層太陽能電池與各元件之量測 92 圖4-20 典型多層太陽能電池與各元件之光吸收量測 93 圖4-21典型多層太陽能電池與各元件之外部量子效應量測 93 圖4- 22多層太陽能電池之層壓法與典型製程之元件量測 94 圖4- 23 0.7M(左)與0.5M(右) ZnO於PH1000上旋塗之SEM圖 94 圖4- 24 0.7M(左)與0.5M(右)ZnO於PH1000上之電池浸泡二氯苯後情形 95 圖4- 25 多層有機太陽能電池之SEM剖面圖 95 圖4- 26 多層有機太陽能電池之TEM剖面圖 96

    [1] D. Kearns, M. Calvin, “Photovoltaic Effect and Photoconductivity in Laminated Organic Systems,” The Journal of Chemical Physics 29, 950-951, (1958).
    [2] K. Matsumura, H. Ohigashi, A. Takahashi, and J. Tsukamoto, “A Schottky-Barrier Type Solar-Cell Using Polyacetylene,” Japenese Journal of Applied Physics 20, L127-L129, (1981).
    [3] R. Gaudiana and C. J. Brabec, “Organic Materials: Fantastic Plastic,” Nature Photonics, 287–289, (2008).
    [4] J. Huang, C. W. Chu, V. Shrotriya, G. Li, and Y. Yang, “Efficient Inverted Polymer Solar Cells,” Applied Physics Letters 88, 253503-1, (2006).
    [5] S. E. Shaheen, D. C. Olson, and M. S. White, N. Kopidakis, “Inverted Bulk-Heteroiunction Organic Photovoltaic Device Using A Solution-Derived ZnO Underlayer,” Applied Physics Letters 89,143517, (2006).
    [6] M. Dubosc, Y. J. Cheng, P. J. Li, C. H. Hsieh, C. H. Chen, R. M. Liang and C. S. Hsu, “Highly Efficient and Stable Inverted Polymer Solar Cells Integrated with Across-Linked Fullerene Material as An Interlayer,” Journal of the American Chemical Society,1324887–4893, (2010).
    [7] M. Hinsch, M. Niggemann, A. Gombert and M. Glatthaar, V. Wittwer, “Diffraction Gratings and Buried Nano-Electrodes-Architectures for Organic Solar Cells,” Thin Solid Films 619, 451-452, (2004).
    [8] G. Zhao, Y. He and Y. Li, “6.5% Efficiency of Polymer Solar Cells Based on poly(3-hexylthiophene) and lndene-C60 Bisadduct by Device Optimization,” Advanced Functional Materials 22, 4355-4358, (2010).
    [9] P. Cheng, Y. Li and X. Zhan, “A DMF-Assisted Solution Process Boosts the Efficiency in P3HT: PCBM Solar Cells Up to 5.31%,” Nanotechnology 24(48), 484008, (2013).
    [10] X. Zhengguo, Y. Yongbo, Y. Bin, V. Jeremy, C. Jihua, D. Ondrej, D. Gerd and H. Jinsong, “Universal Formation of Compositionally Graded Bulk Heterojunction for Efficiency Enhancement in Organic Photovoltaics,” Advanced Materials 26(19), 3068-3075, (2014).
    [11] G. Yu, J. Gao, J. C. Hummelen, F. Wudl and J. Heeger, “Polymer Photovoltaic Cells: Enhanced Efficiencies via A Network of Internal Donor-Acceptor Heterojunctions,” Science 270, p.1789, (1995).
    [12] N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, “Photo-Induced Electron-Transfer from A Conducting Polymer to Buckminster-Fullerene”, Science 258, p.1474, (1992).
    [13] J. C. Hummelen, et al. “Preparation and Characterization of Fulleroid and Methanol Fullerene Derivatives”, The Journal of Organic Chemistry 60, p.532, (1995).
    [14] N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, “Semiconducting Polymers (as Donors) and Buckminster Fullerene (as Acceptor) – Photoinduced Electron-Transfer and Heterojunction Devices”, Synthetic Metals 59, p.333, (1993).
    [15] F. Padinger, R. S. Rittberger and N. S. Sariciftci, “Effects Of Postproduction Treatment on Plastic Solar Cells,” Advanced Functional Materials 13, p.85, (2003).
    [16] G. Li, V. Shortriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, “High Efficiency Solution Processable Polymer Photovoltaic Cells by Self-Organization of Polymer Blends,” Nature Materials, p.864,(2005).
    [17] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger and G. C. Bazan, “Efficiency Enhancement in Low-Bandgap Polymer Solar Cells by Processing with Alkane Dithiols,” Nature Materials 6, p.497, (2007).
    [18] B. Y. Liang, Z. Xu, J. Xia, S. Tsai, Y. Wu, G. Li, C. Ray and L. Yu, “For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency Of 7.4%,” Advanced Materials 22, p.135, (2010).
    [19] Z. He, C. Zhong, X. Huang, W. Wong, H. Wu, L. Chen, S. Su and Y. Cao, “Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density and Fill Factor in Polymer Solar Cells”, Advanced Materials 23, p.4636, (2011).
    [20] M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, “Solar Cell Efficiency Tables (Version 45) ,” Progress in photovoltaics: research and applications, 23(1), 1-9, (2015).
    [21] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante and A. J. Heeger, “Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing,” Science, 317(5835), 222-225, (2007).
    [22] G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf and C. J. Brabec, “Design Rules for Donors in Bulk‐Heterojunction Tandem Solar Cells Towards 15% Energy-Conversion Efficiency,” Advanced Materials 20(3), 579-583, (2008).
    [23] S. Sista, M.-H. Park, Z. Hong, Y. Wu, J. Hou, W. L. Kwan, G. Li, and Y. Yang, “Highly Efficient Tandem Polymer Photovoltaic Cells,” Advanced Materials, 22(3), 380-383, (2010).
    [24] J. Yang, R. Zhu, Z. Hong, Y. He, A. Kumar, Y. Li and Y. Yang, “A Robust Inter-Connecting Layer for Achieving High Performance Tandem Polymer Solar Cells,” Advanced Materials, 23(30), 3465-3470, (2011).
    [25] C. H. Chou, W. L. Kwan, Z. Hong, L. M. Chen and Y. Yang, “A Metal-Oxide Interconnection Layer for Polymer Tandem Solar Cells with An Inverted Architecture,” Advanced Materials, 23(10), 1282-1286, (2011).
    [26] Y. Zhou, C. Fuentes-Hernandez, J. W. Shim, T. M. Khan and B. Kippelen, “High Performance Polymeric Charge Recombination Layer for Organic Tandem Solar Cells,” Energy & Environmental Science, 5(12), 9827-9832, (2012).
    [27] J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen , J. Gao , G. Li and Y. Yang, “A Polymer Tandem Solar Cell with 10.6% Power Conversion Efficiency,” Nature Communications 4, 1446 (2013)
    [28] A. Rashid bin Mohd Yusoff, H. P. Kim, and J. Jang, “All-Solution-Processed Tandem Solar Cells,” Energy Technology 1(4), 212-216, (2013).
    [29] 蔡進譯,“超高效率太陽電池-從愛因斯坦的光電效應談起”,物理雙月刊,第二十七卷第五期
    [30] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen and M. T. Rispens, “Cathode Dependence of the Open-Circuit Voltage of Polymer: Fullerene Bulk Heterojunction Solar Cells,” Journal of Applied Physics 94, p.6849, (2003).
    [31] E. Bundgaard, F. C. Krebs, “Low Band Gap Polymers for Organic Photovoltaics,” Solar Energy Materials and Solar Cells 91(11), 954-985, (2007).
    [32] T. Wang, A. J. Pearson and D. G. Lidzey, “Correlating Molecular Morphology with Optoelectronic Function in Solar Cells Based on Low Band-Gap Copolymer: Fullerene Blends,” Journal of Materials Chemistry C, 1(44), 7266-7293, (2013).
    [33] J. Ouyang and Y. Yang, “Conducting Polymer as Transparent Electric Glue,” Advanced Materials, 18(16), 2141-2144, (2006).
    [34] J. Huang, G. Li and Y. Yang, “A Semi‐Transparent Plastic Solar Cell Fabricated by a Lamination Process,” Advanced materials, 20(3), 415-419, (2008).
    [35] Y. Lu, C. Alexander, Z. Xiao, Y. Yuan, R. Zhang and J. Huang, “Utilizing Insulating Nanoparticles as the Spacer in Laminated Flexible Polymer Solar Cells for Improved Mechanical Stability,” Nanotechnology, 23(34), 344007, (2012).
    [36] M. Nakamura, C. Yang, E. Zhou, K. Tajima and K. Hashimoto, “Polymer Bulk Heterojunction Photovoltaic Devices with Multilayer Structures Prepared by Thermal Lamination,” ACS Applied Materials and Interfaces, 1(12), 2703-2706, (2009).
    [37] M. Nakamura, C. Yang, K. Tajima and K. Hashimoto, “High-Performance Polymer Photovoltaic Devices With Inverted Structure Prepared by Thermal Lamination,” Solar Energy Materials and Solar Cells, 93(9), 1681-1684, (2009).
    [38] V. C. Tung, J. Kim, L. J. Cote and J. Huang, “Sticky Interconnect for Solution-Processed Tandem Solar Cells,” Journal of the American Chemical Society, 133(24), 9262-9265, (2011).
    [39] W. J. Beek, M. M. Wienk, M. Kemerink, X. Yang and R. A. Janssen, “Hybrid Zinc Oxide Conjugated Polymer Bulk Heterojunction Solar Cells,” The Journal of Physical Chemistry, 109(19), 9505-9516, (2005).
    [40] Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter and A. J. Heeger, “Inverted Polymer Solar Cells Integrated with a Low-Temperature-Annealed Sol-Gel-Derived ZnO Film as an Electron Transport Layer,” Advanced Materials, 23(14), 1679-1683, (2011).
    [41] K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate and H. J. Snaith, “Sub-150℃ Processed Meso-Superstructured Perovskite Solar Cells with Enhanced Efficiency,” Energy & Environmental Science, 7(3), 1142-1147, (2014).
    [42] D. M. Antonelli and J. Y. Ying, “Synthesis of Hexagonally Packed Mesoporous TiO2 by A Modified Sol-Gel Method,” Angewandte Chemie International Edition in English, 34(18), 2014-2017, (1995).
    [43] A. bin Mohd Yusoff, S. J. Lee, H. P. Kim, F. K. Shneider, W. J. da Silva and J. Jang, “8.91% Power Conversion Efficiency for Polymer Tandem Solar Cells,” Advanced Functional Materials, 24(15), 2240-2247, (2014)
    [44] S. Murase and Y. Yang, “Solution Processed MoO3 Interfacial Layer for Organic Photovoltaics Prepared by A Facile Synthesis Method,” Advanced Materials, 24(18), 2459-2462, (2012).
    [45] K.-C. Wang , J.-Y. Jeng , P.-S. Shen , Y.-C. Chang , E. W.-G. Diau , C.-H. Tsai , T.-Y. Chao , H.-C. Hsu , P.-Y. Lin , P. C., T.-F. Guo & T.-C. Wen, “P-Type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells,” Scientific Reports, 4, (2014).
    [46] Y. Zhou, T. M. Khan, J. W. Shim, A. Dindar, C. Fuentes-Hernandez and B. Kippelen, “All-Plastic Solar Cells with A High Photovoltaic Dynamic Range,” Journal of Materials Chemistry , 2(10), 3492-3497, (2014).
    [47] Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller‐Meskamp and K. Leo, “Highly Conductive PEDOT: PSS Electrode with Optimized Solvent and Thermal Post‐Treatment for ITO‐Free Organic Solar Cells,” Advanced Functional Materials, 21(6), 1076-1081, (2011).
    [48] J. Huang, P. F. Miller, J. S. Wilson, A. J. de Mello, J. C. de Mello and D. D. Bradley, “Investigation of the Effects of Doping and Post‐Deposition Treatments on the Conductivity, Morphology, and Work Function of Poly (3, 4‐ethylenedioxythiophene)/Poly (styrene sulfonate) Films,” Advanced Functional Materials, 15(2), 290-296, (2005).
    [49] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz and J. C. Hummelen, “2.5% Efficient Organic Plastic Solar Cells,” Applied Physics Letters, 78(6), 841-843, (2001).
    [50] L.-M. Chen, Z. Hong, W. L. Kwan, C.-H. Lu, Y.-F. Lai, B. Lei, C.-P. Liu, and Y. Yang, “Multi-Source/Component Spray Coating for Polymer Solar Cells,” ACS Nano, 4(8), 4744-4752, (2010).
    [51] D. H. Wang, J. S. Moon, J. Seifter, J. Jo, J. H. Park, O. O. Park and A. J. Heeger, “Sequential Processing: Control of Nanomorphology in Bulk Heterojunction Solar Cells,” Nano letters, 11(8), 3163-3168, (2011).
    [52] D. H. Wang, J. K. Kim, J. H. Seo, O. O. Park & J. H. Park, “Stability comparison: A PCDTBT/ PC71BM Bulk-Heterojunction Versus A P3HT/ PC71BM Bulk-Heterojunction,” Solar Energy Materials and Solar Cells, 101, 249-255, (2012).
    [53] C. M. Amb, S. Chen, K. R. Graham, J. Subbiah, C. E. Small, F. So and J. R. Reynolds, “Dithienogermole as a Fused Electron Donor in Bulk Heterojunction Solar Cells,” Journal of the American Chemical Society, 133(26), 10062-10065, (2011).
    [54] A. Colsmann, A. Puetz, A. Bauer, J. Hanisch, E. Ahlswede and U. Lemmer, “Efficient Semi‐Transparent Organic Solar Cells with Good Transparency Color Perception and Rendering Properties,” Advanced Energy Materials, 1(4), 599-603, (2011).
    [55] B. Yang, J. Cox, Y. Yuan, F. Guo and J. Huang, “Increased Efficiency of Low Band Gap Polymer Solar Cells at Elevated Temperature and Its Origins,” Applied Physics Letters, 99(13), 133302, (2011).
    [56] J. Hou, H. Y. Chen, S. Zhang, G. Li and Y. Yang, “Synthesis, Characterization, and Photovoltaic Properties of A Low Band Gap Polymer Based on Silole-Containing Polythiophenes and 2, 1, 3-Benzothiadiazole,” Journal of the American Chemical Society, 130(48), 16144-16145, (2008).
    [57] B. A. Collins, Z. Li, J. R. Tumbleston, E. Gann, C. R. McNeill and H. Ade, “Absolute Measurement of Domain Composition and Nanoscale Size Distribution Explains Performance in PTB7:PC71BM Solar Cells,” Advanced Energy Materials, 3(1), 65-74, (2013).
    [58] H. Chen, J. Peet, S. Hu, J. Azoulay, G. Bazan and M. Dadmun, “The Role of Fullerene Mixing Behavior in the Performance of Organic Photovoltaics: PCBM in Low-Bandgap Polymers,” Advanced Functional Materials, 24(1), 140-150, (2014).
    [59] J. Yang, J. You, C.-C. Chen, W.-C. Hsu, H.-R. Tan, X. W. Zhang, Z. Hong, and Y. Yang, “Plasmonic Polymer Tandem Solar Cell,” ACS Nano, 5(8), 6210-6217, (2011).
    [60] L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li and Y. Yang, “Tandem Polymer Solar Cells Featuring A Spectrally Matched Low-Bandgap Polymer,” Nature Photonics, 6(3), 180-185, (2012)
    [61] L. Chang, H. W. Lademann, J. B. Bonekamp, K. Meerholz and A. J. Moulé, “Effect of Trace Solvent on The Morphology of P3HT: PCBM Bulk Heterojunction Solar Cells,” Advanced Functional Materials, 21(10), 1779-1787, (2011).
    [62] S. Sista, Z. Hong, M. H. Park, Z. Xu and Y. Yang, “High‐Efficiency Polymer Tandem Solar Cells with Three‐Terminal Structure,” Advanced Materials, 22(8), E77-E80, (2010).
    [63] Y. Huang, X. Guo, F. Liu, L. Huo, Y. Chen, T. P. Russell, C. C. Han, Y. Li, and J. Hou, “Improving the Ordering and Photovoltaic Properties by Extending Π–Conjugated Area of Electron‐Donating Units in Polymers with D‐A Structure,” Advanced Materials, 24(25), 3383-3389, (2012).
    [64] H. Lv, X. Zhao, W. Xu, H. Li, J. Chen and X. Yang, “Improving Performance of Polymer Solar Cells Based on PSBTBT/PC71BM via Controlled Solvent Vapor Annealing,” Organic Electronics, 14(7), 1874-1881, (2013).
    [65] H. Yan, L. Zhu, D. Li, Y. Zhang, Y. Yi, Y. Yang, Z. Wei and J.-L. Bredas ́, “Rationalization of the Selectivity in the Optimization of Processing Conditions for High-Performance Polymer Solar Cells Based on the Polymer Self-Assembly Ability,” The Journal of Physical Chemistry, 118(51), 29473-29481, (2014).
    [66] L. Dou, J. Gao, E. Richard, J. You, C.-C. Chen, K. C. Cha, Y. He, G. Li and Y. Yang, “Systematic Investigation of Benzodithiophene- and Diketopyrrolopyrrole-Based Low-Bandgap Polymers Designed for Single Junction and Tandem Polymer Solar Cells,” Journal of the American Chemical Society, 134(24), 10071-10079,(2012).
    [67] J. W. Shim, Y. Zhou, C. Fuentes-Hernandez, A. Dindar, Z. Guan, H. Cheun, A. Kahn and B. Kippelen, “Studies of the Optimization of Recombination Layers for Inverted Tandem Polymer Solar Cells,” Solar Energy Materials and Solar Cells, 107, 51-55, (2012).
    [68] T. Ameri, N. Li and C. J. Brabec, “Highly Efficient Organic Tandem Solar Cells: A Follow Up Review,” Energy & Environmental Science, 6(8), 2390-2413, (2013).
    [69] S. Sista, Z. Hong, L. M. Chen and Y. Yang, “Tandem Polymer Photovoltaic Cells-Current Status, Challenges and Future Outlook,” Energy & Environmental Science, 4(5), 1606-1620, (2011).
    [70] J. You, L. Dou, Z. Hong, G. Li and Y. Yang, “Recent Trends in Polymer Tandem Solar Cells Research,” Progress in polymer science, 38(12), 1909-1928, (2013).
    [71] F. Verbakel, S. C. Meskers and R. A. Janssen, “Electronic Memory Effects in Diodes from A Zinc Oxide Nanoparticle-Polystyrene Hybrid Material,” Applied Physics Letters, 89(10), 102103, (2006).
    [72] H. Lu, B. Akgun and T. P. Russell, “Morphological Characterization of a Low‐Bandgap Crystalline Polymer: PCBM Bulk Heterojunction Solar Cells,” Advanced Energy Materials, 1(5), 870-878, (2011).
    [73] B. Schmidt-Hansberg, M. F. G. Klein, M. Sanyal, F. Buss, G. Q. G. de Medeiros, C. Munuera, A. Vorobiev, A. Colsmann, P. Scharfer, U. Lemmer, E. Barrena and W. Schabel, “Structure Formation in Low-Bandgap Polymer: Fullerene Solar Cell Blends in The Course of Solvent Evaporation,” Macromolecules, 45(19), 7948-7955, (2012).
    [74] N. Li, T. Stubhan, D. Baran, J. Min, H. Wang, T. Ameri and C. J. Brabec, “Design of the Solution‐Processed Intermediate Layer by Engineering for Inverted Organic Multi junction Solar Cells,” Advanced Energy Materials, 3(3), 301-307, (2013).

    無法下載圖示 校內:2020-08-19公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE