簡易檢索 / 詳目顯示

研究生: 張耕銓
Chang, Keng-Chuan
論文名稱: 以第一原理計算研究鉑(Pt)電極對鈦酸鉛(PTO)薄膜帶電電域壁的穩定性與鐵電性質之影響
Effect of Pt Electrodes on the Charged Domain Wall Stability and Ferroelectricity of PTO (PbTiO3) Thin Film: A First-principles Study
指導教授: 許文東
Hsu, Wen-Dung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 105
中文關鍵詞: 鐵電材料鈦酸鉛電域壁表面界面
外文關鍵詞: Ferroelectric material, PbTiO3, Domain wall, surface, interface
相關次數: 點閱:133下載:36
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鐵電材料由於其特殊的性質被學界所注意,而屬於鐵電材料的鈦酸鉛(PbTiO3)因其鈣鈦礦結構具有良好的鐵電性質與機械性質。目前社會中科技產品越來越追求更加輕薄短小的產品,鈦酸鉛材料因為其潛力被不斷的研究與討論。而目前因為科技的高速發展,需要更複雜的處理資訊,所以對於記憶體產品有越來越高的要求與期待,由此,以鈣鈦礦結構為主的鐵電材料開始在記憶體領域嶄露頭角,不管實驗還是模擬都有很多人去探討其性質與應用,在早期得研究中,鐵電材料以電容器類型的記憶體被研究與討論,在這個前提下,由於在尺寸減少時會有去極化場影響其極化穩定度,有觀察到會因此這樣產生不同極化方向的電域,也因此觀察到不同電域之間的壁壘,也就是電域壁,具有特殊的性質而被關注,近幾年內,有很多團隊鑒於電域壁特殊的性質提出了電域壁記憶體的構想,在減少尺寸的狀況下可以有更好的穩定度並且由於電域壁屬於奈米尺度所以可以有更多的資訊儲存密度。但在這個前提下,我們要對電域壁的最小穩定尺寸有更多認知,並且在元件的設計上,其表面與界面效應皆不可忽視,因此在本實驗室已經對鈦酸鉛的電域壁與表面有基礎的前提下,去探討其表面的細微性質,和接上電極後與電極的界面對鈦酸鉛材料的影響,並同時探討電域壁的性質與穩定度是否會由於接上電極後產生改變,在考量到接上電極後可能有電荷的轉移,所以選用了第一原理計算去研究其熱力學的穩定度與其鐵電性質的變化。
    本研究成功以第一原理研究鈦酸鉛的表面和與電極間的界面對鐵電性質的影響,並以元件設計為主體對鈦酸鉛材料探討其電域壁在有電極時的穩定度與性質變化。

    In this study, the surface properties of the PTO with parallel surfaces in the polarization direction are investigated, and the formation energy and domain wall properties of the 180-degree strong domain wall are explored. In terms of the effect of platinum electrodes on ferroelectric materials, the interface effects have been studied. The formation energy of the domain wall system in the presence of electrodes and its ferroelectric properties are further investigated, and the experimental observations are successfully verified for reasonableness.

    摘要 I 誌謝 XXXII 目錄 XXXIII 表目錄 XXXV 圖目錄 XXXVI 名詞對照表 XL 第一章 緒論 1 第二章 文獻回顧 3 2.1 鐵電材料的特性與應用 3 2.1.1 鐵電效應 3 2.1.2 電滯曲線 5 2.1.3 鐵電材料應用 7 2.2 鈦酸鉛材料性質及微結構 8 2.3 鐵電材料記憶體元件設計 10 2.4 鐵電材料穩定的表面結構 18 2.4.1 表面結構考量 18 2.4.2 鈦酸鉛表面特性 19 2.5 電極與其接面 21 2.5.1 接面選擇 21 第三章 模擬基礎理論回顧 22 3.1 第一原理計算 22 3.1.1 密度泛函理論(DFT) 24 3.1.2 Kohn-Sham定理與方程式 26 3.1.3 交換關聯能-局部密度近似與廣義梯度近似 28 3.1.4 贗勢能 30 3.1.5 週期性邊界條件 31 第四章 物理模型與模擬設計 33 4.1 計算模擬實驗設計 33 4.1.1 結構優化 35 4.2 建立鈦酸鉛(PbTiO3) 接上電極(Pt)的模型 37 4.2.1 PTO(100)_slab模型 37 4.2.2 接上電極(Pt)的結構模型 39 4.3 建立180度強電域壁模型 42 4.3.1 PTO_SDW_180∘模型 42 4.3.2 極化量及極化方向計算方法 44 4.4 建立包含電域壁與電極模型 51 4.4.1 模型簡化 51 4.4.2 包含電域壁與電極模型 52 第五章 結果與討論 53 5.1 晶體結構優化 53 5.1.1 鈦酸鉛晶體結構優化 53 5.1.2 鉑金屬晶體結構優化 55 5.2 表面結構與電極對鐵電材料影響 56 5.2.1 PTO(100)_slab模型 56 5.2.2 接上電極之鈦酸鉛結構 61 5.2.3 接上電極之不同極化方向鈦酸鉛結構比較 64 5.3 PTO_SDW_180∘模型 81 5.3.1 電域壁生成能 81 5.3.2 電域穩定性 82 5.3.3 態密度(Density of states, DOS)分析 84 5.4 PTO_SDW_180∘接上電極之簡化模型 88 5.4.1 簡化模型依據 88 5.4.2 電域壁生成能 88 5.4.3 模型結構優化後極化量分析 89 5.4.4 電荷分佈-Bader Charge分析 91 5.4.5 態密度(Density of states, DOS)分析 95 第六章 結論 101 參考文獻 103

    1. Meyer, B. and D. Vanderbilt, Ab initio study of ferroelectric domain walls in PbTiO 3. Physical Review B, 2002. 65(10): p. 104111.
    2. Wang, C., et al., Energy-efficient ferroelectric domain wall memory with controlled domain switching dynamics. ACS Applied Materials & Interfaces, 2020. 12(40): p. 44998-45004.
    3. Meyer, B., J. Padilla, and D. Vanderbilt, Theory of PbTiO3, BaTiO3, and SrTiO3 surfaces. Faraday Discussions, 1999. 114: p. 395-405.
    4. Umeno, Y., et al., Ab initio study of the critical thickness for ferroelectricity in ultrathin Pt∕ PbTiO 3∕ Pt films. Physical Review B, 2006. 74(6): p. 060101.
    5. De Araujo, C.A.P., L. McMillan, and J. Scott, Processing of Ferroelectric Memories. MRS Online Proceedings Library (OPL), 1991. 230.
    6. Francombe, M., Ferroelectric films and their device applications. Thin Solid Films, 1972. 13(2): p. 413-433.
    7. Haertling, G.H., Ferroelectric thin films for electronic applications. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1991. 9(3): p. 414-420.
    8. Haertling, G.H., PLZT electrooptic materials and applications—a review. Ferroelectrics, 1987. 75(1): p. 25-55.
    9. Lines, M.E. and A.M. Glass, Principles and applications of ferroelectrics and related materials. 2001: Oxford university press.
    10. Lang, S.B., Review of recent work on pyroelectric applications. Ferroelectrics, 1984. 53(1): p. 189-196.
    11. Shimada, T., et al., Shell model potential for PbTiO3 and its applicability to surfaces and domain walls. Journal of Physics: Condensed Matter, 2008. 20(32): p. 325225.
    12. Sharma, P., et al., Nonvolatile ferroelectric domain wall memory. Science advances, 2017. 3(6): p. e1700512.
    13. Jiang, A.Q. and Y. Zhang, Next-generation ferroelectric domain-wall memories: principle and architecture. NPG Asia Materials, 2019. 11(1): p. 1-5.
    14. Seidel, J., et al., Conduction at domain walls in oxide multiferroics. Nature materials, 2009. 8(3): p. 229-234.
    15. Bednyakov, P.S., et al., Physics and applications of charged domain walls. npj Computational Materials, 2018. 4(1): p. 1-11.
    16. Crassous, A., et al., Polarization charge as a reconfigurable quasi-dopant in ferroelectric thin films. Nature nanotechnology, 2015. 10(7): p. 614-618.
    17. Inoue, R., et al., Giant photovoltaic effect of ferroelectric domain walls in perovskite single crystals. Scientific reports, 2015. 5(1): p. 1-9.
    18. Kalinichev, A., et al., Elastic properties of tetragonal PbTiO3 single crystals by Brillouin scattering. Journal of materials research, 1997. 12(10): p. 2623-2627.
    19. Fontana, M., et al., Raman spectrum in PbTiO3 re-examined: dynamics of the soft phonon and the central peak. Journal of Physics: Condensed Matter, 1991. 3(44): p. 8695.
    20. Shin, Y.-H., et al., Order–disorder character of PbTiO3. Journal of Physics: Condensed Matter, 2007. 20(1): p. 015224.
    21. Valasek, J., Piezo-electric and allied phenomena in Rochelle salt. Physical review, 1921. 17(4): p. 475.
    22. Lous, R., Ferroelectric memory devices. How to store information of the future, 2011.
    23. Wu, S.-Y., A new ferroelectric memory device, metal-ferroelectric-semiconductor transistor. IEEE Transactions on Electron Devices, 1974. 21(8): p. 499-504.
    24. Jiang, J., et al., Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories. Nature materials, 2018. 17(1): p. 49-56.
    25. Jiang, A.Q., et al., Ferroelectric domain wall memory with embedded selector realized in LiNbO3 single crystals integrated on Si wafers. Nature Materials, 2020. 19(11): p. 1188-1194.
    26. So, Y., et al., Polarization switching kinetics of epitaxial Pb (Zr 0.4 Ti 0.6) O 3 thin films. Applied Physics Letters, 2005. 86(9): p. 092905.
    27. Baker, J.S. and D.R. Bowler, Origin of ferroelectric domain wall alignment with surface trenches in ultrathin films. Physical Review Letters, 2021. 127(24): p. 247601.
    28. Al-Saidi, W. and A.M. Rappe, Density functional study of PbTiO 3 nanocapacitors with Pt and Au electrodes. Physical Review B, 2010. 82(15): p. 155304.
    29. Umeno, Y., et al., Ab initio calculations of ferroelectric instability in PbTiO 3 capacitors with symmetric and asymmetric electrode layers. Physical Review B, 2009. 80(20): p. 205122.
    30. Sai, N., A.M. Kolpak, and A.M. Rappe, Ferroelectricity in ultrathin perovskite films. Physical Review B, 2005. 72(2): p. 020101.
    31. Tao, L. and J. Wang, Ferroelectricity and tunneling electroresistance effect in asymmetric ferroelectric tunnel junctions. Journal of Applied Physics, 2016. 119(22): p. 224104.
    32. Kim, S.-H., C.-E. Kim, and Y.-J. Oh, Influence of Al2O3 diffusion barrier and PbTiO3 seed layer on microstructural and ferroelectric characteristics of PZT thin films by sol-gel spin coating method. Thin Solid Films, 1997. 305(1-2): p. 321-326.
    33. Kresse, G. and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review B, 1996. 54(16): p. 11169.
    34. Kresse, G. and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational materials science, 1996. 6(1): p. 15-50.
    35. Kohn, W. and L.J. Sham, Self-consistent equations including exchange and correlation effects. Physical review, 1965. 140(4A): p. A1133.
    36. Hohenberg, P. and W. Kohn, Inhomogeneous electron gas. Physical review, 1964. 136(3B): p. B864.
    37. Dudarev, S.L., et al., Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+ U study. Physical Review B, 1998. 57(3): p. 1505.
    38. Lee, I.-H. and R.M. Martin, Applications of the generalized-gradient approximation to atoms, clusters, and solids. Physical Review B, 1997. 56(12): p. 7197.
    39. Perdew, J.P., et al., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical review B, 1992. 46(11): p. 6671.
    40. Kresse, G. and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Physical review b, 1999. 59(3): p. 1758.
    41. Luo, X., B. Wang, and Y. Zheng, Tunable tunneling electroresistance in ferroelectric tunnel junctions by mechanical loads. ACS nano, 2011. 5(3): p. 1649-1656.
    42. Shen, L., et al., Systematic study of ferroelectric, interfacial, oxidative, and doping effects on conductance of Pt/BaTiO 3/Pt ferroelectic tunnel junctions. Physical Review B, 2012. 85(6): p. 064105.
    43. Sepliarsky, M., M. Stachiotti, and R. Migoni, Surface reconstruction and ferroelectricity in PbTiO 3 thin films. Physical Review B, 2005. 72(1): p. 014110.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE