簡易檢索 / 詳目顯示

研究生: 陳致文
Chen, Chih-Wen
論文名稱: 基於多模干涉效應整合三層電阻式記憶體至鈮酸鋰平台以實現光記憶體之應用
Integrating Trilayer Resistive Random Access Memory into a Lithium Niobate Optical Memory Based on Multi-Mode Interference Effect
指導教授: 莊文魁
Chuang, Ricky W.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 201
中文關鍵詞: 鈮酸鋰多模干涉電阻式記憶體鈣鈦礦量子點光記憶體
外文關鍵詞: Lithium Niobate, Multi-Mode Interference, ReRAM, Perovskite Quantum Dots, Optical Memory
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光通訊技術憑藉其高頻寬、低損耗及抗電磁干擾等優勢,已確立其在現代高速與長距離資料傳輸中的關鍵地位,並被視為取代傳統電子架構的理想方案。在此趨勢下,光積體電路(PIC)因能有效提升系統整合度、降低功耗與成本而備受矚目。本研究旨在突破現有光憶阻器在材料與性能上的限制,提出一種新穎的非揮發性光記憶體元件,成功將電阻式記憶體(ReRAM)微縮堆疊至鈦擴散鈮酸鋰(Ti-diffused LiNbO3)多模干涉(MMI)耦合器上。此ReRAM採用Ag / Al2O3 / CsPbBr3 QDs / Al2O3 / ITO的三層結構,並結合電化學金屬化(ECM)與價態變化(VCM)雙重機制,透過鈣鈦礦量子點(CsPbBr3 QDs)切換層優異的離子遷移特性,協同銀離子(Ag+)、溴空缺("V" _"Br" ^" +" )及氧空缺("V" _"O" ^" 2+" )共同遷移形成穩定的導電路徑,從而實現低功耗且高穩定性的電阻切換行為。雙層Al2O3結構同時兼具保護與離子擴散阻障功能,賦予元件可控的漸進式切換能力。當透過電控寫入或擦除ReRAM的電阻狀態時,導電燈絲的生成與斷裂將引起局部折射率變化,可對MMI波導中的相位進行非揮發性調變,進而同步調控輸出光功率、分光比與穿透頻譜,實現了多維度的光學讀取功能。此研究成果不僅展現了光電整合元件在記憶與調變功能上的應用潛力,亦為新世代高整合度、低功耗之光子類神經計算平台提供創新設計觀點與實驗基礎。

    Optical communication, with advantages of high bandwidth, low propagation loss, and strong immunity to electromagnetic interference (EMI), has become a critical technology for modern high-speed and long-distance data transmission. Researchers and engineers widely regard it as a promising alternative to traditional electronic architectures. Thus, in this context, photonic integrated circuits (PICs) are gaining significant attention for enhancing system integration while reducing power consumption and cost. This research presents a novel non-volatile optical memory, innovatively integrating a miniaturized resistive random access memory (ReRAM) onto a Ti-diffused lithium niobate (LiNbO3) multi-mode interference (MMI) coupler. The ReRAM features an Ag / Al2O3 / CsPbBr3 QDs / Al2O3 / ITO trilayer structure, combining electrochemical metallization (ECM) and valence change mechanism (VCM). The CsPbBr3 perovskite quantum dots switching layer exhibits excellent ion mobility, enabling stable, low-power resistive switching via the synergistic migration of silver ions (Ag+), bromine vacancies ("V" _"Br" ^" +" ), and oxygen vacancies ("V" _"O" ^" 2+" ) to form conductive paths. Dual Al2O3 layers are protective and ion-diffusion barriers, ensuring controllable, gradual switching. Electrically controlling the ReRAM state induces localized refractive index changes, allowing for non-volatile phase modulation of the MMI waveguide. This integrated device enables multi-dimensional optical readout by simultaneously controlling output power, splitting ratio, and transmission spectra. This work demonstrates the practical application potential of this optoelectronic integrated device in memory and modulation. It provides a pioneering design perspective and experimental foundation for future high-performance, reconfigurable, and low-power photonic neuromorphic computing platforms.

    中文摘要 I SUMMARY II 誌謝 XX 目錄 XXII 表目錄 XXVI 圖目錄 XXVII 第一章 緒論 1 1.1 光通訊與光積體電路 1 1.2 光憶阻器 4 1.3 研究動機 10 1.4 論文架構 13 參考文獻 14 第二章 鈮酸鋰多模干涉耦合器 16 2.1 多模干涉耦合器 16 2.1.1 自成像原理 17 2.1.2 導模傳播分析 18 2.1.3 一般干涉機制 21 2.1.4 限制干涉機制 23 2.2 鈮酸鋰材料介紹 26 2.3 鈮酸鋰波導製作方式 30 2.3.1 鋰外擴散法 30 2.3.2 金屬離子內擴散法 31 2.3.3 質子交換法 33 2.3.4 波導製作方法比較 34 2.4 鈦擴散鈮酸鋰波導 35 2.4.1 平面波導擴散理論 35 2.4.2 通道式波導擴散理論 37 2.4.3 折射率模型 38 2.4.4 數值模擬與參數設置 40 參考文獻 44 第三章 電阻式記憶體 49 3.1 新興非揮發性記憶體 49 3.2 電阻式記憶體導論 51 3.3 電阻切換機制 54 3.3.1 電化學金屬化機制 55 3.3.2 價態變化機制 56 3.3.3 熱化學機制 57 3.4 電極與切換層材料介紹 58 3.4.1 銀(Ag) 59 3.4.2 氧化銦錫(ITO) 62 3.4.3 氧化鋁(Al2O3) 63 3.4.4 鈣鈦礦量子點 65 參考文獻 67 第四章 元件設計與製作 69 4.1 元件製作概述 69 4.2 多模干涉波導元件設計 70 4.2.1 稜鏡耦合 70 4.2.2 多模干涉耦合器設計 78 4.3 光罩圖形設計 80 4.4 鈮酸鋰多模干涉波導製程 85 4.5 電阻式記憶體製程 89 4.6 製程參數與細節 96 4.6.1 鈮酸鋰晶圓切割 96 4.6.2 黃光微影 98 4.6.3 雙層掀離製程(BLOP) 100 4.6.4 射頻磁控濺鍍機 104 4.6.5 電子槍蒸鍍系統 106 4.6.6 研磨拋光 108 4.7 CSPBBR3量子點合成及光學特性 111 4.7.1 CsPbBr3量子點合成步驟 111 4.7.2 直接光催化圖案化技術 115 4.7.3 CsPbBr3量子點之光學特性分析 117 參考文獻 120 第五章 量測分析與結果討論 121 5.1 電阻式記憶體電性量測 121 5.1.1 單層結構ReRAM之I-V特性曲線 122 5.1.2 雙層結構ReRAM之I-V特性曲線 123 5.1.3 三層結構ReRAM之I-V特性曲線 124 5.1.4 最佳化三層結構ReRAM之性能分析 126 5.1.5 電阻切換機制與總結 134 5.2 光電整合量測系統 138 5.3 多模干涉波導光學量測 142 5.3.1 Cross-coupler穿透頻譜 143 5.3.2 3dB Splitter穿透頻譜 144 5.3.3 Bar-coupler穿透頻譜 145 5.3.4 MMI耦合器之性能分析 146 5.4 光電整合量測(長直波導結構) 147 5.4.1 電光訊號同步量測 147 5.4.2 穿透頻譜響應 150 5.5 光電整合量測(MMI波導結構) 151 5.5.1 電光訊號同步量測 151 5.5.2 穿透頻譜響應 156 5.6 非揮發性光記憶體之總體性能探討 159 參考文獻 161 第六章 結論與未來展望 163 6.1 結論 163 6.2 未來研究 165 參考文獻 167

    第一章
    [1] T. H. Maiman, "Stimulated optical radiation in ruby," nature, vol. 187, no. 4736, pp. 493-494, 1960.
    [2] F. P. Kapron, D. B. Keck, and R. D. Maurer, "Radiation losses in glass optical wave-guides," Applied Physics Letters, vol. 17, no. 10, pp. 423-425, 1970.
    [3] L. Rapp, "Amplification in multiband systems: Challenges and solutions," in 49th European Conference on Optical Communications (ECOC 2023), 2023, vol. 2023: IET, pp. 37-40.
    [4] S. E. Miller, "Integrated optics: An introduction," The Bell system technical journal, vol. 48, no. 7, pp. 2059-2069, 1969.
    [5] J. Wang, H. Yang, N. Xiong, M. Zhang, N. Qian, S. Yi, S. Xu, and W. Zou, "Toward photonic–electronic convergence based on heterogeneous platform of merging lith-ium niobate into silicon," Journal of the Optical Society of America B, vol. 40, no. 6, pp. 1573-1590, 2023.
    [6] L. Chua, "Memristor-The missing circuit element," IEEE Transactions on Circuit Theory, vol. 18, no. 5, pp. 507-519, 1971.
    [7] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The missing memristor found," nature, vol. 453, no. 7191, pp. 80-83, 2008.
    [8] A. Mehonic, A. Sebastian, B. Rajendran, O. Simeone, E. Vasilaki, and A. J. Kenyon, "Memristors—From in‐memory computing, deep learning acceleration, and spiking neural networks to the future of neuromorphic and bio‐inspired computing," Ad-vanced Intelligent Systems, vol. 2, no. 11, p. 2000085, 2020.
    [9] E. Battal, A. Ozcan, and A. K. Okyay, "Resistive Switching‐based Electro‐Optical Modulation," Advanced Optical Materials, vol. 2, no. 12, pp. 1149-1154, 2014.
    [10] C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, "Integrated all-photonic non-volatile multi-level memory," Na-ture photonics, vol. 9, no. 11, pp. 725-732, 2015.
    [11] Y. Jung, H. Han, A. Sharma, J. Jeong, S. S. Parkin, and J. K. Poon, "Integrated hybrid VO2–silicon optical memory," ACS Photonics, vol. 9, no. 1, pp. 217-223, 2022.
    [12] N. Youngblood, C. A. Ríos Ocampo, W. H. Pernice, and H. Bhaskaran, "Integrated optical memristors," Nature Photonics, vol. 17, no. 7, pp. 561-572, 2023.
    [13] A. Emboras, I. Goykhman, B. Desiatov, N. Mazurski, L. Stern, J. Shappir, and U. Levy, "Nanoscale plasmonic memristor with optical readout functionality," Nano letters, vol. 13, no. 12, pp. 6151-6155, 2013.
    [14] C. Hoessbacher, Y. Fedoryshyn, A. Emboras, A. Melikyan, M. Kohl, D. Hillerkuss, C. Hafner, and J. Leuthold, "The plasmonic memristor: a latching optical switch," Op-tica, vol. 1, no. 4, pp. 198-202, 2014.
    [15] L. Singh, V. Kaushik, S. Rajput, R. D. Mishra, and M. Kumar, "Light assisted elec-tro-metallization in resistive switch with optical accessibility," Journal of Lightwave Technology, vol. 39, no. 18, pp. 5869-5874, 2021.
    [16] R. D. Mishra, S. K. Pandey, P. Babu, S. Kumar, A. Kumar, N. Mohanta, and M. Ku-mar, "Nanophotonic resistive switch based on tapered copper-silicon structure with low power and high extinction ratio," Optics & Laser Technology, vol. 175, p. 110833, 2024.
    [17] R. W. Chuang, Y.-C. Chang, and C.-L. Huang, "Lithium niobate long-period wave-guide gratings integrated with bismuth ferrite (BiFeO3) resistive random access memory," in Oxide-based Materials and Devices XV, 2024, vol. 12887: SPIE, pp. 66-73.
    [18] A. Hirai, Y. Matsumoto, T. Sato, T. Kawai, A. Enokihara, S. Nakajima, and N. Yamamoto, "Optical multimode interference couplers of Ti: LiNbO3 waveguides and electrical tuning of power splitting ratio," Optics Communications, vol. 501, p. 127325, 2021.
    [19] D. May-Arrioja, P. LiKamWa, J. Sanchez-Mondragon, R. Selvas-Aguilar, and I. Torres-Gomez, "A reconfigurable multimode interference splitter for sensing appli-cations," Measurement Science and Technology, vol. 18, no. 10, p. 3241, 2007.
    [20] K. Thyagarajan, R. Sokhoyan, L. Zornberg, and H. A. Atwater, "Millivolt modulation of plasmonic metasurface optical response via ionic conductance," Advanced Mate-rials, vol. 29, no. 31, p. 1701044, 2017.
    第二章
    [1] O. Bryngdahl, "Image formation using self-imaging techniques," Journal of the Op-tical Society of America, vol. 63, no. 4, pp. 416-419, 1973.
    [2] R. Ulrich, "Image formation by phase coincidences in optical waveguides," Optics Communications, vol. 13, no. 3, pp. 259-264, 1975.
    [3] L. B. Soldano and E. C. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications," Journal of lightwave technology, vol. 13, no. 4, pp. 615-627, 1995.
    [4] M. Bachmann, P. A. Besse, and H. Melchior, "General self-imaging properties in N× N multimode interference couplers including phase relations," Applied optics, vol. 33, no. 18, pp. 3905-3911, 1994.
    [5] C. Peng, C. Yang, H. Zhao, L. Liang, C. Zheng, C. Chen, L. Qin, and H. Tang, "Opti-cal waveguide refractive index sensor for biochemical sensing," Applied Sciences, vol. 13, no. 6, p. 3829, 2023.
    [6] B. Matthias and J. Remeika, "Ferroelectricity in the ilmenite structure," Physical Review, vol. 76, no. 12, p. 1886, 1949.
    [7] A. A. Ballman, "Growth of piezoelectric and ferroelectric materials by the Czochra-Iski technique," Journal of the American Ceramic Society, vol. 48, no. 2, pp. 112-113, 1965.
    [8] M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, "First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation," Applied Physics Letters, vol. 62, no. 5, pp. 435-436, 1993.
    [9] V. Gopalan, V. Dierolf, and D. A. Scrymgeour, "Defect–domain wall interactions in trigonal ferroelectrics," Annu. Rev. Mater. Res., vol. 37, no. 1, pp. 449-489, 2007.
    [10] R. Weis and T. Gaylord, "Lithium niobate: Summary of physical properties and crystal structure," Applied Physics A, vol. 37, pp. 191-203, 1985.
    [11] R. Smith, K. Nassau, and M. Galvin, "EFFICIENT CONTINUOUS OPTICAL SEC-OND‐HARMONIC GENERATION," Applied Physics Letters, vol. 7, no. 10, pp. 256-258, 1965.
    [12] M. Manzo, F. Laurell, V. Pasiskevicius, and K. Gallo, "Lithium niobate: The silicon of photonics!," in Nano-Optics for Enhancing Light-Matter Interactions on a Molec-ular Scale: Plasmonics, Photonic Materials and Sub-Wavelength Resolution, 2013: Springer, pp. 421-422.
    [13] D. Smith, H. Riccius, and R. Edwin, "Refractive indices of lithium niobate," Optics communications, vol. 17, no. 3, pp. 332-335, 1976.
    [14] F. H. Mok, M. Tackitt, and H. Stoll, "Storage of 500 high-resolution holograms in a LiNbO3 crystal," Optics Letters, vol. 16, no. 8, pp. 605-607, 1991.
    [15] L. Myers, G. Miller, R. Eckardt, M. Fejer, R. Byer, and W. Bosenberg, "Qua-si-phase-matched 1.064-μm-pumped optical parametric oscillator in bulk periodi-cally poled LiNbO3," Optics letters, vol. 20, no. 1, pp. 52-54, 1995.
    [16] I. Kaminow and J. Carruthers, "Optical waveguiding layers in LiNbO3 and LiTaO3," Applied Physics Letters, vol. 22, no. 7, pp. 326-328, 1973.
    [17] R. Schmidt and I. Kaminow, "Metal-diffused optical waveguides in LiNbO3," Ap-plied Physics Letters, vol. 25, no. 8, pp. 458-458, 1974.
    [18] J. L. Jackel, C. Rice, and J. Veselka, "Proton exchange for high‐index waveguides in LiNbO3," Applied Physics Letters, vol. 41, no. 7, pp. 607-608, 1982.
    [19] L. Gui, B. Xu, and T. C. Chong, "Microstructure in lithium niobate by use of focused femtosecond laser pulses," IEEE Photonics Technology Letters, vol. 16, no. 5, pp. 1337-1339, 2004.
    [20] G. Bava, I. Montrosset, W. Sohler, and H. Suche, "Numerical modeling of Ti: LiNbO3 integrated optical parametric oscillators," IEEE journal of quantum elec-tronics, vol. 23, no. 1, pp. 42-51, 1987.
    [21] Y. N. Korkishko and V. Fedorov, "Relationship between refractive indices and hy-drogen concentration in proton exchanged LiNbO3 waveguides," Journal of applied physics, vol. 82, no. 3, pp. 1010-1017, 1997.
    [22] C. Langrock, S. Kumar, J. E. McGeehan, A. Willner, and M. Fejer, "All-optical signal processing using χ(2) nonlinearities in guided-wave devices," Journal of Lightwave technology, vol. 24, no. 7, pp. 2579-2592, 2006.
    [23] P. Rabiei and P. Gunter, "Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding," Applied Physics Letters, vol. 85, no. 20, pp. 4603-4605, 2004.
    [24] H. Hu, R. Ricken, and W. Sohler, "Lithium niobate photonic wires," Optics express, vol. 17, no. 26, pp. 24261-24268, 2009.
    [25] A. Boes, L. Chang, C. Langrock, M. Yu, M. Zhang, Q. Lin, M. Lončar, M. Fejer, J. Bowers, and A. Mitchell, "Lithium niobate photonics: Unlocking the electromagnet-ic spectrum," Science, vol. 379, no. 6627, p. eabj4396, 2023.
    [26] D. Zhu, L. Shao, M. Yu, R. Cheng, B. Desiatov, C. J. Xin, Y. Hu, J. Holzgrafe, S. Ghosh, and A. Shams-Ansari, "Integrated photonics on thin-film lithium niobate," Advances in Optics and Photonics, vol. 13, no. 2, pp. 242-352, 2021.
    [27] M. Armenise, "Fabrication techniques of lithium niobate waveguides," IEE Pro-ceedings J (Optoelectronics), vol. 135, no. 2, pp. 85-91, 1988.
    [28] J. Noda, N. Uchida, S. Saito, T. Saku, and M. Minakata, "Electro‐optic amplitude modulation using three‐dimensional LiNbO3 waveguide fabricated by TiO2 diffu-sion," Applied Physics Letters, vol. 27, no. 1, pp. 19-21, 1975.
    [29] K. Sugii, M. Fukuma, and H. Iwasaki, "A study on titanium diffusion into LiNbO3 waveguides by electron probe analysis and X-ray diffraction methods," Journal of Materials Science, vol. 13, pp. 523-533, 1978.
    [30] M. Minakata, S. Saito, and M. Shibata, "Two‐dimensional distribution of refractive‐index changes in Ti‐diffused LiNbO3 strip waveguides," Journal of Applied Physics, vol. 50, no. 5, pp. 3063-3067, 1979.
    [31] M. Armenise, C. Canali, M. De Sario, A. Carnera, P. Mazzoldi, and G. Celotti, "Characterization of (Ti0.65Nb0.35) O2 compound as a source for Ti diffusion dur-ing Ti: LiNbO3 optical waveguides fabrication," Journal of Applied Physics, vol. 54, no. 1, pp. 62-70, 1983.
    [32] M. De Sario, M. Armenise, C. Canali, A. Carnera, P. Mazzoldi, and G. Celotti, "TiO2, LiNb3O8, and (TixNb1−x) O2 compound kinetics during Ti: LiNbO3 wave-guide fabrication in the presence of water vapors," Journal of applied physics, vol. 57, no. 5, pp. 1482-1488, 1985.
    [33] C. Rice and R. Holmes, "A new rutile structure solid‐solution phase in the LiNb3O8‐TiO2 system, and its role in Ti diffusion into LiNbO3," Journal of applied physics, vol. 60, no. 11, pp. 3836-3839, 1986.
    [34] R. Esdaile, "Comment on ‘‘Characterization of TiO2, LiNb3O8, and (Ti0.65Nb0.35) O2 compound growth observed during Ti: LiNbO3 optical waveguide fabrication’’," Journal of applied physics, vol. 58, no. 2, pp. 1070-1071, 1985.
    [35] M. Armenise, C. Canali, M. De Sario, A. Carnera, P. Mazzoldi, and G. Celotti, "Characterization of TiO2, LiNb3O8, and (Ti0.65Nb0.35) O2 compound growth ob-served during Ti: LiNbO3 optical waveguide fabrication," Journal of applied phys-ics, vol. 54, no. 11, pp. 6223-6231, 1983.
    [36] J. Jackel, V. Ramaswamy, and S. Lyman, "Elimination of out‐diffused surface guid-ing in titanium‐diffused LiNbO3," Applied Physics Letters, vol. 38, no. 7, pp. 509-511, 1981.
    [37] J. Jackel, "Suppression of outdiffusion in titanium diffused LiNbO3: a review," Journal of Optical Communications, vol. 3, no. 3, pp. 82-85, 1982.
    [38] M. Armenise, C. Canali, M. De Sario, P. Franzosi, J. Singh, R. Hutchins, and R. De La Rue, "Dependence of inplane scattering levels in Ti: LiNbO3 optical waveguides on diffusion time," in IEE Proceedings H (Microwaves, Optics and Antennas), 1984, vol. 131, no. 5: IET, pp. 295-298.
    [39] B.-U. Chen and A. C. Pastor, "Elimination of Li2O out-diffusion waveguide in LiNbO3 and LiTaO3," Applied Physics Letters, vol. 30, no. 11, pp. 570-570, 1977.
    [40] W. Burns, C. Bulmer, and E. West, "Application of Li2O compensation techniques to Ti‐diffused LiNbO3 planar and channel waveguides," Applied Physics Letters, vol. 33, no. 1, pp. 70-72, 1978.
    [41] T. Ranganath and S. Wang, "Suppression of Li2O out‐diffusion from Ti‐diffused LiNbO3 optical waveguides," Applied Physics Letters, vol. 30, no. 8, pp. 376-379, 1977.
    [42] S. Miyazawa, R. Guglielmi, and A. Carenco, "A simple technique for suppressing Li2O out-diffusion in Ti: LiNbO3 optical waveguide," Applied Physics Letters, vol. 31, no. 11, p. 742, 1977.
    [43] G. Sia, J. Teng, A. Danner, R. Yin, S. Ang, A. Chew, M. Lai, E. Dogheche, A. Gokar-na, and A. Stolz, "Fabrication and characterization of proton-exchanged waveguide on x-cut LiNbO3," in 2008 IEEE PhotonicsGlobal@ Singapore, 2008: IEEE, pp. 1-4.
    [44] M. De Micheli, J. Botineau, P. Sibillot, D. Ostrowsky, and M. Papuchon, "Fabrica-tion and characterization of titanium indiffused proton exchanged (TIPE) wave-guides in lithium niobate," Optics Communications, vol. 42, no. 2, pp. 101-103, 1982.
    [45] T. Fujiwara, R. Srivastava, X. Cao, and R. V. Ramaswamy, "Comparison of photore-fractive index change in proton-exchanged and Ti-diffused LiNbO3 waveguides," Optics letters, vol. 18, no. 5, pp. 346-348, 1993.
    [46] M. Rottschalk, A. Rasch, and W. Karthe, "Electrooptic behaviour of proton ex-changed LiNbO3 optical waveguides," Journal of optical communications, vol. 9, no. 1, pp. 19-23, 1988.
    [47] T. Suhara, H. Tazaki, and H. Nishihara, "Measurement of reduction in SHG coeffi-cient of LiNbO3 by proton exchanging," Electronics Letters, vol. 25, no. 20, pp. 1326-1328, 1989.
    [48] A. Yi‐Yan, "Index instabilities in proton‐exchanged LiNbO3 waveguides," Applied Physics Letters, vol. 42, no. 8, pp. 633-635, 1983.
    [49] P. Suchoski, T. K. Findakly, and F. Leonberger, "Stable low-loss proton-exchanged LiNbO3 waveguide devices with no electro-optic degradation," Optics letters, vol. 13, no. 11, pp. 1050-1052, 1988.
    [50] F. Caccavale, P. Chakraborty, A. Quaranta, I. Mansour, G. Gianello, S. Bosso, R. Corsini, and G. Mussi, "Secondary‐ion‐mass spectrometry and near‐field studies of Ti: LiNbO3 optical waveguides," Journal of applied physics, vol. 78, no. 9, pp. 5345-5350, 1995.
    [51] S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, "Wavelength dis-persion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters," Journal of lightwave technology, vol. 5, no. 5, pp. 700-708, 1987.
    [52] E. Strake, G. P. Bava, and I. Montrosset, "Guided modes of Ti: LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with the scalar fi-nite-element method," Journal of lightwave technology, vol. 6, no. 6, pp. 1126-1135, 1988.
    [53] J. White and P. Heidrich, "Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis," Applied optics, vol. 15, no. 1, pp. 151-155, 1976.
    第三章
    [1] C. G. Riva, Special Topics in Information Technology. Springer Nature, 2023.
    [2] T. Hickmott, "Low‐frequency negative resistance in thin anodic oxide films," Jour-nal of Applied Physics, vol. 33, no. 9, pp. 2669-2682, 1962.
    [3] W. A. Wulf and S. A. McKee, "Hitting the memory wall: Implications of the obvi-ous," ACM SIGARCH computer architecture news, vol. 23, no. 1, pp. 20-24, 1995.
    [4] F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, "Recent progress in resistive random access memories: Materials, switching mechanisms, and performance," Materials Science and Engineering: R: Reports, vol. 83, pp. 1-59, 2014.
    [5] R. Waser and M. Aono, "Nanoionics-based resistive switching memories," Nature materials, vol. 6, no. 11, pp. 833-840, 2007.
    [6] I. Valov, R. Waser, J. R. Jameson, and M. N. Kozicki, "Electrochemical metallization memories—fundamentals, applications, prospects," Nanotechnology, vol. 22, no. 25, p. 254003, 2011.
    [7] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen, and M.-J. Tsai, "Metal–oxide RRAM," Proceedings of the IEEE, vol. 100, no. 6, pp. 1951-1970, 2012.
    [8] X. Zhang, L. Xu, H. Zhang, J. Liu, D. Tan, L. Chen, Z. Ma, and W. Li, "Effect of Joule heating on resistive switching characteristic in AlOx cells made by thermal oxidation formation," Nanoscale Research Letters, vol. 15, pp. 1-8, 2020.
    [9] A. S. Sokolov, H. Abbas, Y. Abbas, and C. Choi, "Towards engineering in memristors for emerging memory and neuromorphic computing: A review," Journal of Semi-conductors, vol. 42, no. 1, p. 013101, 2021.
    [10] P. B. Johnson and R.-W. Christy, "Optical constants of the noble metals," Physical review B, vol. 6, no. 12, p. 4370, 1972.
    [11] S. A. Maier, Plasmonics: fundamentals and applications. Springer, 2007.
    [12] Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, "Indium-tin-oxide for high-performance electro-optic modulation," Nanophotonics, vol. 4, no. 2, pp. 198-213, 2015.
    [13] F. Michelotti, L. Dominici, E. Descrovi, N. Danz, and F. Menchini, "Thickness de-pendence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 μm," Optics letters, vol. 34, no. 6, pp. 839-841, 2009.
    [14] L.-G. Wang, X. Qian, Y.-Q. Cao, Z.-Y. Cao, G.-Y. Fang, A.-D. Li, and D. Wu, "Excel-lent resistive switching properties of atomic layer-deposited Al2O3/HfO2/Al2O3 trilayer structures for non-volatile memory applications," Nanoscale research letters, vol. 10, pp. 1-8, 2015.
    [15] K.-M. Persson, M. S. Ram, and L.-E. Wernersson, "Ultra-scaled AlOx diffusion bar-riers for multibit HfOx RRAM operation," IEEE Journal of the Electron Devices So-ciety, vol. 9, pp. 564-569, 2021.
    [16] P. Basnet, E. C. Anderson, F. F. Athena, B. Chakrabarti, M. P. West, and E. M. Vogel, "Asymmetric resistive switching of bilayer HfOx/AlOy and AlOy/HfOx memristors: The oxide layer characteristics and performance optimization for digital set and an-alog reset switching," ACS Applied Electronic Materials, vol. 5, no. 3, pp. 1859-1865, 2023.
    [17] G. Rose, "Beschreibung einiger neuen Mineralien des Urals," Annalen der Physik, vol. 124, no. 12, pp. 551-573, 1839.
    [18] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, "Nanocrystals of cesium lead halide per-ovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut," Nano letters, vol. 15, no. 6, pp. 3692-3696, 2015.
    [19] S. Wei, Y. Yang, X. Kang, L. Wang, L. Huang, and D. Pan, "Room-temperature and gram-scale synthesis of CsPbX3 (X= Cl, Br, I) perovskite nanocrystals with 50–85% photoluminescence quantum yields," Chemical Communications, vol. 52, no. 45, pp. 7265-7268, 2016.
    [20] Y. Wang, Z. Lv, Q. Liao, H. Shan, J. Chen, Y. Zhou, L. Zhou, X. Chen, V. A. Roy, and Z. Wang, "Synergies of electrochemical metallization and valance change in all‐inorganic perovskite quantum dots for resistive switching," Advanced materials, vol. 30, no. 28, p. 1800327, 2018.
    [21] M.-C. Yen, C.-J. Lee, K.-H. Liu, Y. Peng, J. Leng, T.-H. Chang, C.-C. Chang, K. Tamada, and Y.-J. Lee, "All-inorganic perovskite quantum dot light-emitting memo-ries," Nature communications, vol. 12, no. 1, p. 4460, 2021.
    第四章
    [1] J. White and P. Heidrich, "Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis," Applied optics, vol. 15, no. 1, pp. 151-155, 1976.
    [2] J. C. Lambropoulos, M. Jolly, C. Amsden, S. Gilman, M. Sinicropi, D. Diakomihalis, and S. Jacobs, "Thermal conductivity of dielectric thin films," Journal of applied physics, vol. 66, no. 9, pp. 4230-4242, 1989.
    [3] R. D. Mishra, S. K. Pandey, P. Babu, S. Kumar, A. Kumar, N. Mohanta, and M. Ku-mar, "Nanophotonic resistive switch based on tapered copper-silicon structure with low power and high extinction ratio," Optics & Laser Technology, vol. 175, p. 110833, 2024.
    [4] Y. Wu, Y. Wei, Y. Huang, F. Cao, D. Yu, X. Li, and H. Zeng, "Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors," Nano Re-search, vol. 10, pp. 1584-1594, 2017.
    [5] Y. Suh and G. P. Watson, "Optimization of Bilayer Lift-Off Process to Enable the Gap Size of 1μm Using LOR 3A and S1813," Singh Center for Nanotechnology, University of Pennsylvania, Philadelphia, PA, 2021.
    [6] S. Maeng, S. J. Park, J. Lee, H. Lee, J. Choi, J. K. Kang, and H. Cho, "Direct photo-catalytic patterning of colloidal emissive nanomaterials," Science Advances, vol. 9, no. 33, p. eadi6950, 2023.
    [7] J. Tauc, R. Grigorovici, and A. Vancu, "Optical properties and electronic structure of amorphous germanium," physica status solidi (b), vol. 15, no. 2, pp. 627-637, 1966.
    第五章
    [1] Y. Wu, Y. Wei, Y. Huang, F. Cao, D. Yu, X. Li, and H. Zeng, "Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors," Nano Re-search, vol. 10, pp. 1584-1594, 2017.
    [2] P. Basnet, E. C. Anderson, F. F. Athena, B. Chakrabarti, M. P. West, and E. M. Vogel, "Asymmetric resistive switching of bilayer HfOx/AlOy and AlOy/HfOx memristors: The oxide layer characteristics and performance optimization for digital set and an-alog reset switching," ACS Applied Electronic Materials, vol. 5, no. 3, pp. 1859-1865, 2023.
    [3] F.-C. Chiu, "A review on conduction mechanisms in dielectric films," Advances in Materials Science and Engineering, vol. 2014, no. 1, p. 578168, 2014.
    [4] Z. Peng, F. Wu, L. Jiang, G. Cao, B. Jiang, G. Cheng, S. Ke, K. C. Chang, L. Li, and C. Ye, "HfO2‐based memristor as an artificial synapse for neuromorphic computing with tri‐layer HfO2/BiFeO3/HfO2 design," Advanced Functional Materials, vol. 31, no. 48, p. 2107131, 2021.
    [5] X. Zhao, Z. Fan, H. Xu, Z. Wang, J. Xu, J. Ma, and Y. Liu, "Reversible alternation between bipolar and unipolar resistive switching in Ag/MoS2/Au structure for mul-tilevel flexible memory," Journal of Materials Chemistry C, vol. 6, no. 27, pp. 7195-7200, 2018.
    [6] C. Eames, J. M. Frost, P. R. Barnes, B. C. O’regan, A. Walsh, and M. S. Islam, "Ionic transport in hybrid lead iodide perovskite solar cells," Nature communications, vol. 6, no. 1, p. 7497, 2015.
    [7] D. Pan, Y. Fu, J. Chen, K. J. Czech, J. C. Wright, and S. Jin, "Visualization and stud-ies of ion-diffusion kinetics in cesium lead bromide perovskite nanowires," Nano letters, vol. 18, no. 3, pp. 1807-1813, 2018.
    [8] M. Lai, A. Obliger, D. Lu, C. S. Kley, C. G. Bischak, Q. Kong, T. Lei, L. Dou, N. S. Ginsberg, and D. T. Limmer, "Intrinsic anion diffusivity in lead halide perovskites is facilitated by a soft lattice," Proceedings of the National Academy of Sciences, vol. 115, no. 47, pp. 11929-11934, 2018.
    [9] X. Liu, S. Ren, Z. Li, J. Guo, S. Yi, Z. Yang, W. Hao, R. Li, and J. Zhao, "Flexible transparent high‐efficiency photoelectric perovskite resistive switching memory," Advanced Functional Materials, vol. 32, no. 38, p. 2202951, 2022.
    [10] M.-C. Yen, C.-J. Lee, K.-H. Liu, Y. Peng, J. Leng, T.-H. Chang, C.-C. Chang, K. Tamada, and Y.-J. Lee, "All-inorganic perovskite quantum dot light-emitting memo-ries," Nature communications, vol. 12, no. 1, p. 4460, 2021.
    [11] T. Nabatame, T. Yasuda, M. Nishizawa, M. Ikeda, T. Horikawa, and A. Toriumi, "Comparative studies on oxygen diffusion coefficients for amorphous and γ-Al2O3 films using 18O isotope," Japanese journal of applied physics, vol. 42, no. 12R, p. 7205, 2003.
    [12] H. Jeon, J. Park, W. Jang, H. Kim, H. Song, H. Kim, H. Seo, and H. Jeon, "Resistive switching behaviors of Cu/TaOx/TiN device with combined oxygen vacancy/copper conductive filaments," Current Applied Physics, vol. 15, no. 9, pp. 1005-1009, 2015.
    [13] K.-C. Chuang, K.-Y. Lin, J.-D. Luo, W.-S. Li, Y.-S. Li, C.-Y. Chu, and H.-C. Cheng, "Effects of electric fields on the switching properties improvements of RRAM de-vice with a field-enhanced elevated-film-stack structure," IEEE Journal of the Elec-tron Devices Society, vol. 6, pp. 622-626, 2018.
    [14] V. K. Inavalli, V. Pottapinjara, and N. K. Viswanathan, "Wavelength Dependence of the Polarization Singularities in a Two‐Mode Optical Fiber," International Journal of Optics, vol. 2012, no. 1, p. 358093, 2012.
    [15] K. Thyagarajan, R. Sokhoyan, L. Zornberg, and H. A. Atwater, "Millivolt modulation of plasmonic metasurface optical response via ionic conductance," Advanced Mate-rials, vol. 29, no. 31, p. 1701044, 2017.
    [16] A. Emboras, I. Goykhman, B. Desiatov, N. Mazurski, L. Stern, J. Shappir, and U. Levy, "Nanoscale plasmonic memristor with optical readout functionality," Nano letters, vol. 13, no. 12, pp. 6151-6155, 2013.
    [17] C. Hoessbacher, Y. Fedoryshyn, A. Emboras, A. Melikyan, M. Kohl, D. Hillerkuss, C. Hafner, and J. Leuthold, "The plasmonic memristor: a latching optical switch," Op-tica, vol. 1, no. 4, pp. 198-202, 2014.
    [18] L. Singh, V. Kaushik, S. Rajput, R. D. Mishra, and M. Kumar, "Light assisted elec-tro-metallization in resistive switch with optical accessibility," Journal of Lightwave Technology, vol. 39, no. 18, pp. 5869-5874, 2021.
    [19] R. D. Mishra, S. K. Pandey, P. Babu, S. Kumar, A. Kumar, N. Mohanta, and M. Ku-mar, "Nanophotonic resistive switch based on tapered copper-silicon structure with low power and high extinction ratio," Optics & Laser Technology, vol. 175, p. 110833, 2024.
    第六章
    [1] S. J. Kim, S. Kim, and H. W. Jang, "Competing memristors for brain-inspired com-puting," Iscience, vol. 24, no. 1, 2021.
    [2] A. Mehonic, A. Sebastian, B. Rajendran, O. Simeone, E. Vasilaki, and A. J. Kenyon, "Memristors—From in‐memory computing, deep learning acceleration, and spiking neural networks to the future of neuromorphic and bio‐inspired computing," Ad-vanced Intelligent Systems, vol. 2, no. 11, p. 2000085, 2020.

    無法下載圖示 校內:2030-08-18公開
    校外:2030-08-18公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE