簡易檢索 / 詳目顯示

研究生: 施馨媛
Shih, Hsin-Yuan
論文名稱: 非接觸絕緣式介電泳晶片於細胞操控之研究
The Study on Contactless Insulator-based Dielectrophoretic Microchip for Cells Manipulation
指導教授: 蕭飛賓
Hsiao, Fei-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 86
中文關鍵詞: 介電泳力細胞分離流體力乳膠粒子聚焦細胞操控紅血球
外文關鍵詞: Dielectrophoresis, cell manipulation, latex particle focusing, blood, HeLa cell
相關次數: 點閱:159下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物細胞的操控與檢測在生醫應用中是非常重要且不可或缺的。為了避免破壞及影響細胞,本論文使用非接觸式的介電泳力來分離細胞,利用導電溶液中絕緣式結構壓縮電力線產生不均勻電場,使生物粒子因受介電泳力的影響,驅動往高電場密度或低電場密度區域移動,利用正介電泳力捕捉死細胞於流速低之高電場梯度區域,負介電泳力會驅逐活細胞至流速高之低電場梯度區域,以控制方式來達到死細胞與活細胞的分離,並能在出口產生不同粒子之分離及收集。本文利用數值模擬分析設計絕緣式介電泳晶片(iDEP)之X型結構進行電力線壓縮,更改結構間距及角度找出最佳化設計並依此設計做實驗驗證模擬結果,針對不同流速及電壓操控可以有效分離生物細胞。
    此外,以該絕緣式介電泳晶片為基礎,發展非接觸電極施加方式,以20 m寬之PDMS區別流道及插入電極之高導電度溶液儲存槽,設計了非接觸絕緣式介電泳晶片(cDEP),該微型晶片可有效聚焦乳膠粒子,乳膠粒子受負介電泳力排斥會趨向流道中心,輔以流體力可快速壓縮聚焦乳膠粒子。數值模擬與實驗結果皆表明,在高電壓、高頻率、低流速都可以增加聚焦效率。
    近來可有效隔離稀有的循環腫瘤細胞(circulating tumor cells ,CTC)之裝置對於醫療診斷是十分重要的。本文中使用之非接觸絕緣式介電泳晶片可有效的區別HeLa 細胞及紅血球細胞,主要利用HeLa細胞可產生較紅血球細胞多於七倍之介電泳力。依此介電泳力大小之差異性可利用不同電壓及流速提高分離兩種細胞之效率。

    Manipulation and discrimination of biological cells is essential to many biomedical applications. Insulator-based dielectrophoresis (iDEP) trapping consists of insulating structures which squeeze the electric field in a conductive solution to create a non-uniform electric field. Cells with different dielectrophoretic responses were therefore separated and collected in the outlet. Simulations were numerically performed to investigate parameters of the design in the present study. Furthermore, experiments were also conducted to demonstrate the feasibility of hydrodynamic separation using iDEP in the proposed design. The main purpose of the present study was to investigate the feasibility of applying the technique of contactless dielectrophoresis (cDEP) on an iDEP micro-device with effective focusing of particles. The latex particles were, therefore, repelled toward the center of the micro-channel by the negative dielectrophoretic forces generated by the insulating structures. The numerical simulations and experimental results indicated that an increase in the strength of the applied electric field significantly enhanced the performance of focusing. The ability to isolate rare cells, such as circulating tumor cells (CTC), is important for medical diagnostics and characterization. The cDEP device can effectively isolate HeLa cells from a peripheral blood sample. The magnitude of the dielectrophoresis force acting on HeLa cells is about seven-fold that on red blood cells (RBCs) under a given electric field distribution in a sucrose medium, making it possible to separate HeLa cells from normal blood cells.

    中文摘要 i Abstract ii Acknowledgements iv Contents v List of figures vii List of tables xii Nomenclature xiii ChapterⅠ Introduction 1 1-1 Background 1 1-2 Literature of manipulation and separation biological particles 3 1-2.1 Mechanical force 3 1-2.2 Hydrodynamic force 4 1-2.3 Optical force 5 1-2.4 Magnetic force 7 1-2.5 Electric force 9 1-3 Literature review of dielectrophoresis method 11 1-3.1 Electrode dielectrophoresis 12 1-3.2 Insulator-based electrodeless dielectrophoresis 14 1-3.3 Contactless dielectrophoresis 17 1-4. Research motivation 22 ChapterⅡ Theory 23 2-1 Dielectrophoretic (DEP) force theory 25 2-2 Clausius Mossotti factor of biological particles 28 2-3 Hydrodynamic force 31 2-4 Alternating current impedance spectroscopy 33 2-4.1 The component of the equivalent circuit model 33 2-4.2 A analysis of the alternating current impedance spectroscopy 35 ChapterⅢ Simulation tool 39 3-1 Flow module 39 3-1.1 Mass Conservation 39 3-1.2 Momentum Conservation 40 3-2 Spray (particle) module 41 3-3 Electric module 43 3-4 Dielectrophoretic force module 44 Chapter Ⅳ Chip fabrication and experiment setup 46 4-1 Design of chip 46 4-1.1 Design of the insulator structure 46 4-1.2 Insulator-based electrodeless dielectrophoresis chip 48 4-1.3 Contactless dielectrophoresis chip 49 4-2 Fabrication of the chip 52 4-2.1 Electrode process 52 4-2.2 Mold process 55 4-2.3 Replica process 59 4-2.4 Bonding process 60 4-3 Cell treatment 61 4-3.1 Cell culture 61 4-3.2 Sample preparation 63 4-4 Experiment setup 65 4-4.1 Optical system 65 4-4.2 Electrical System 65 ChapterⅤ Simulated and experimented results 66 5-1 Simulated results of the insulator structure design 66 5-2 Results of the insulator-based dielectrophoresis chip 69 5-2.1 Simulated results of the insulator-based dielectrophoresis chip 69 5-2.2 Experimented results of the insulator-based dielectrophoresis chip 72 5-3 Results of the contactless dielectrophoresis chip 73 5-3.1 Simulated results of the contactless dielectrophoresis chip 73 5-3.2 Experimented results of the contactless dielectrophoresis chip 74 Chapter Ⅵ Conclusion 82 Reference 84

    [1] N. Chronis and L. P. Lee (2005), “Electrothermally activated SU-8 microgripper for single cell manipulation in solution,” Journal of microelectromechanical system, 14, pp. 857-863.

    [2] J. Takagi, M. Yamada, M. Yasuda and M. Seki (2005), “Continuous particle separation in a microchannel having asymmetrically arranged multiple branches,” Lab on a Chip, 5, pp.778-784.

    [3] M. Dao, C. T. Limb and S. Suresh (2003) , “Mechanics of the human red blood cell deformed by optical tweezers, “ Journal of the mechanics and physics of solids, 51, pp. 2259-2280.

    [4] H. Lee, Y. Liu, D. Ham and R.M. Westervelt (2004), “Manipulation of biological cells using a microelectromagnet matrix,” Applied Physics Letters, 85, pp.1063-1065.

    [5] Y. W. Kim and J. Y. Yoo (2009) , “Three-dimensional focusing of red blood cells in microchannel flows for bio-sensing applications,” Biosensors and Bioelectronics, 24, pp. 3677-3682.

    [6] L. Zheng, J. P. Brody and P. J. Burke (2004), “Electronic manipulation of DNA, proteins, and nanoparticles for potential circuit assembly,” Biosensors and Bioelectronics, 20 , pp.606–619.

    [7] C. F. Gonzalez and V. T. Remcho (2009), “Fabrication and evaluation of a ratchet type dielectrophoretic device for particle analysis,” Journal of Chromatography A, 1216, pp.9063–9070.

    [8] D. Holmes, H. Morgan and N. G. Green (2006), “High throughput particle analysis: Combining dielectrophoretic particle focussing with confocal optical detection,” Biosensors and Bioelectronics, 21, pp.1621-1630.

    [9] H. Chu, I. Doh and Y. H. Cho (2009), “ A three-dimensional (3D) particle focusing channel using the positive dielectrophoresis (pDEP) guided by a dielectric structure between two planar electrodes,” Lab on a Chip,9,pp. 686-691.

    [10] K. Ino, H. Shiku, F. Ozawa, T. Yasukawa and T. Matsue (2009) , “Manipulation of microparticles for construction of array patterns by negative dielectrophoresis using multilayered array and grid electrodes,” Biotechnology and Bioengineering, 104 (4), pp.709-718.

    [11] C. P. Jen and T. W. Chen (2009), “Selective trapping of live and dead mammalian cells using insulator-based dielectrophoresis within open-top microstructures,” Biomedical Microdevices, 11(3), pp. 597-607.

    [12] H. Shafiee ,J. L. Caldwell, M. B. Sano and R. V. Davalos (2009), “Contactless dielectrophoresis: a new technique for cell manipulation,” Biomedical Microdevices, 11, pp.997–1006

    [13] H. Shafiee, J. L. Caldwell, and R. V. Davalos (2010), “A microfluidic system for biological particle enrichment using contactless dielectrophoresis,” Journal of the Association for Laboratory Automation, 15 (3), pp.224-232.

    [14] H. Shafiee, M. B. Sano, E. A. Henslee, J. L. Caldwellcd and R. V. Davalos (2010), “Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP),” Lab on a Chip, 10, pp.438–445.

    [15] H. A. Pohl (1978) Dielectrophoresis. Combridge University Press, New York.

    [16] R. Pethig and D. B. Kell (1987), “The passive electrical properties of biological systems: their significance in physiology, biophysics, and biotechnology,” Physics in Medicine and Biology, 32(8), pp.933-970.

    [17] T. B. Jones (1995) Electromechanics of particles. Cambridge University Press, New York.

    [18] R. Pethig (2006) , Dielectrophoresis of biological cells. in Somasundaran P (Ed.): Encyclopedia of surface and colloid science. CRC Press .Columbia University, New York

    [19] K. Asami, Y. Takahashit and S Takashima(1990), “Frequency domain analysis of membrane capacitance of cultured cells ( HeLa and myeloma) using the micropipette technique,” Biophysical Journal, 58, pp.143-148.

    [20] C. P. Jen and T. W. Chen (2009), “Trapping of cells by insulator-based dielectrophoresis using open-top microstructures,” Microsystem Technologies , 15(8), pp.1141-1148.

    [21] X. Wang, X. B. Wang, F. F. Bechker, and R. C. Gascoyne (1996), “A theoretical method of electrical field analysis for Dielectrophoretic electrode arrays using Green’s theorem,” Journal of Physics D: Applied Physics, 29, pp. 1649-1660

    [22] A. J. Goldman, R. G. Cox, and H. Brenner. (1967), “Slow viscous motion of a sphere parallel to a plane wall Coquette flow,” Chemical Engineering Science, 22, pp. 653-660

    [23] W. M. Deen(1998) Analysis of transport phenomena. Oxford University Press, New York.

    [24] P. Cherukat and J. B. McLaughlin(1994), “The inertial lift on a rigid sphere in a linear shear-flow field near a flat wall,” Journal of Fluid Mechanics, 263, pp. 1-18

    [25] D. Leighton and A. Acrivos. (1985), “The lift on a small sphere touching a plane in the presence of a simple shear flow,” Journal of Applied Mathematics and Physics, 36, pp. 174-178

    [26] P. G. Bruce (1995), Solid State Electrochemistry, Cambridge University Press.

    [27] A. J. Bard and L. R. Faulkner (2001) Electrochemical Method Fundamentals and Application, WILEY.

    [28] T. A. Zawodzinski and M. Neeman(1991), “Determination of water dlffusion coefficients in perfluorosulfonate ionomeric membranes,” The Journal of Physical Chemistry,95(15), pp. 6040–6044

    下載圖示 校內:2013-07-19公開
    校外:2013-07-19公開
    QR CODE