簡易檢索 / 詳目顯示

研究生: 吳長銘
Wu, Chang-Ming
論文名稱: 虛擬工具機之開放式建構及在圓弧與轉角誤差改善之應用
Development of Open Architecture for Virtual Machine Tool with Application to Improvement of Arc and Corner Errors
指導教授: 李榮顯
Lee, Rong-Shean
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 72
中文關鍵詞: 開放式架構虛擬工具機加工模擬圓弧與轉角誤差
外文關鍵詞: Open Architecture, Virtual Machine Tool, Machining Simulation, Arc and Corner Error
相關次數: 點閱:151下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前大多數商用加工驗證軟體如Vericut、UG NX等,需製作CNC控制器的模擬器來模擬工具機的運動指令並以此做為加工模擬的基礎。此做法需耗費額外成本因應各種不同控制器製作模擬器,且其模擬結果易有誤差。對此本文發展一套開放式虛擬工具機系統可透過網路與CNC控制器通訊,獲取加工路徑資料並進行模擬。
    此方法只需製作資料收集器即可應用於各種類型之控制器,大幅減少製作控制器模擬器的成本,且因指令來自真實控制器,因此模擬的結果不會有運動指令上的誤差,可達到更精確的模擬預測效果。此外開放式架構之虛擬工具機具有可擴充性,使用者可取得現有模組的資訊自行設計新的功能模組,達到加值的效果。
    本文亦針對控制器之後加減速規劃所產生的輪廓誤差進行改善,提出一套流程,根據由控制器獲取之路徑資料進行分析,可找出轉角及圓弧之誤差,並依推導出的公式計算適合的進給率,將誤差減至目標值內,其必要資訊皆可從控制器取得。
    最後,本文以鞋模及輪圈加工範例測試本文發展之開放式虛擬工具機系統,並比較控制器模擬器與真實控制器的模擬結果。以手機殼加工做為圓弧及轉角誤差改善的範例,比較改善前後之圓弧及轉角誤差。

    Most commercial software for machining verification, such as Vericut and UG NX, requires a computer numerical control (CNC) controller simulator to generate motion commands for machining simulation. However, making a controller simulator takes a lot of work and this approach can lead to inaccurate machining simulation.
    Therefore, in this research, an open virtual machine tool system is developed, which can access the tool path data from a CNC controller via network communication and apply these data to simulate machining. The proposed method can be applied to various types of controller and only requires making a connector, lowering the cost of making a controller simulator. Because the motion commands are from a real controller, there is no error in the motion commands in the simulation, increasing accuracy. In addition, the open architecture virtual machine tool is extendible. Users can access the information of existing modules and design new application modules.
    This research also modifies the feedrate to reduce contour error due to acceleration and deceleration control after interpolation (ADCAI). The proposed method analyzes the tool path data from the controller and finds arc and corner errors. It then calculates the appropriate feedrate for reducing the errors to the target. All required data can be accessed from the controller.
    Finally, a shoe mold machining process and a wheel rim machining process are taken as case studies to test the performance of the proposed virtual machine tool. The simulation results are compared with the results obtained using a controller simulator. A phone case machining process is used to test the improvement. The results with and without improvement are compared.

    摘要 I Abstract II Acknowledgement IV Table of Contents V List of Tables VII List of Figures VIII Nomenclature XI Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Review 3 1.2.1 Open Architecture and CNC communication 3 1.2.2 Virtual Machine Tool 4 1.2.3 Machining Accuracy Improvement by Modifying Control Command 5 1.3 Research Objectives and Methods 8 Chapter 2 Background 10 2.1 Socket Programming using TCP/IP Protocol 10 2.2 Virtual Machine Tool System 12 2.2.1 Universal Virtual Machine Tool Construction 12 2.2.2 Motion Simulation 14 2.2.3 Collision Detection 17 2.2.4 Material Removal Simulation 18 2.3 Acceleration and Deceleration Planning 20 2.3.1 Arc Error Analysis in ADCAI 23 2.3.2 Corner Error Analysis in ADCAI 25 Chapter 3 Open Virtual Machine Tool System Kernel 28 3.1 Open Architecture of Virtual Machine Tool System 28 3.2 Integration of Virtual Machine Tool with CNC Controller 31 3.2.1 Design of External Control Module 33 3.2.2 Method of Collecting Data from CNC Controller 35 3.2.3 Design of Connector for External Control Module 39 Chapter 4 Improvement of Arc and Corner Errors from ADCAI 41 4.1 Improvement method for Arc Error 41 4.2 Improvement method for Corner Error 45 Chapter 5 Results and Discussion 48 5.1 Case Study of Machine Tool Simulation via CNC Controller 48 5.1.1 Shoe Mold Machining 48 5.1.2 Motion Simulation of Twin-spindle Turning Machine 56 5.2 Case Study for Improvement of Arc and Corner Errors 59 5.2.1 Arc Error Improvement 60 5.2.2 Corner Error Improvement 63 Chapter 6 Conclusion and Suggestions 66 6.1 Conclusion 66 6.2 Suggestions 68 References 69

    Altintas, Y., & Engin, S. Generalized Modeling of Mechanics and Dynamics of Milling Cutters. CIRP Annals - Manufacturing Technology, 50(1), pp. 25-30. (2001)
    Altintas, Y., & Yellowley, I. The identification of radial width and axial depth of cut in peripheral milling. International Journal of Machine Tools and Manufacture, 27(3), pp. 367-381. (1987)
    Altintas, Y., Brecher, C., Weck, M., & Witt, S. Virtual Machine Tool. CIRP Annals - Manufacturing Technology, 54(2), pp. 115–138. (2005)
    Black, S. Hook Operations. Retrieved from Steven Black: http://stevenblack.com/articles/hook-operations/. (2015)
    FANUC. FOCAS2. (2002)
    França, T. V., Torrisi, N. M., & Bottene, A. C. CNC Machine Tool Monitoring using Mtconnect Communication Architecture. 22nd International Congress of Mechanical Engineering (pp. 6660-6669). Ribeirão Preto, SP, Brazil: ABCM. (2013)
    Heidenhain. HEIDENHAIN DNC RemoTools SDK help system. (2015)
    Hsieh, E. P. An Octree Method for Milling Force Prediction in Five-Axis Virtual Machine Tool. Master Thesis. Tainan: National Cheng Kung University. (2013)
    Huang, L. C. Volumetric Errors Analysis and Compensation of Elastic Deformation of Thin Workpiece in Five-Axis Virtual Machine Tool. Master Thesis. Tainan, Taiwan: National Cheng Kung University. (2013)
    Karunakaran, K. P., Shringi, R., Ramamurthi, D., & Hariharan, C. Octree-based NC simulation system for optimization of feed rate in milling using instantaneous force model. The International Journal of Advanced Manufacturing Technology, 46(5-8), pp. 465-490. (2010)
    Kim, H. C. Tool path modification for optimized pocket milling. International Journal of Production Research, 45(24), pp. 5715-5729. (2007)
    Kim, H. C. Tool path generation and modification for constant cutting forces in direction parallel milling. The International Journal of Advanced Manufacturing Technology, 52(9-12), pp. 937-947. (2011)
    Koren, Y., Hu, S., Gu, P., & Shpitalni, M. Open-architecture products. CIRP Annals - Manufacturing Technology, 62(2), pp. 719–729. (2013)
    Lee, R. S., & Lin, Y. H. Development of universal environment for constructing 5-axis virtual machine tool based on modified D-H notation and OpenGL. Robotics and Computer-Integrated Manufacturing, 26(3), pp. 253-262. (2010)
    Lee, R. S., & Mei, K. J. Motion and Virtual Cutting Simulation System for a Five-Axis Virtual Machine Tool. 2011 International Journal of Automation and Smart Technology, Vol. 1, No. 1, pp. 35-39. (2011)
    Lee, R. S., & Mei, K. J. Development of Parallel Cutting Simulation with Adaptive Octree Model in Virtual Machine Tool. The 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (pp. 654-658). Kaohsiung, Taiwan: 2012 IEEE. (2012)
    Lee, R. S., & Mei, K. J. Development of Virtual Machine Tool for Simulation and Evaluation. Computer-Aided Design and Applications, 8(6), pp. 849-858. (2013)
    Li, J. G., Zhao, H., Yao, Y. X., & Liu, C. Q. Off-line optimization on NC machining based on virtual machining. The International Journal of Advanced Manufacturing Technology, 36(9-10), pp. 908-917. (2008)
    Lin, Y. H. Study on Universal Construction of Five-axis Virtual Machine Tool Simulation System. Master Thesis. Tainan, Taiwan: National Cheng Kung University. (2004)
    de Lacalle, N. L., & Mentxaka, A. L. Machine Tools for High Performance Machining. Springer Science & Business Media. (2009)
    Mei, K. J., & Lee, R. S. Collision detection for virtual machine tools and virtual robot arms using the Shared Triangles Extended Octrees method. International Journal of Computer Integrated Manufacturing. (2015)
    Pritschow, G., Altintas, Y., Jovane, F., Koren, Y., Mitsuishi, M., Takata, S., ... & Yamazaki, K. Open controller architecture–past, present and future. CIRP Annals-Manufacturing Technology, 50(2), 463-470. (2001)
    Ridwan, F., & Xu, X. Advanced CNC system with in-process feed-rate optimisation. Robotics and Computer-Integrated Manufacturing, 29(3), pp. 12-20. (2013)
    Shih, Y. T., Chen, C. S., & Lee, A. C. Path planning for CNC contouring around a corner. JSME INTERNATIONAL JOURNAL SERIES C-MECHANICAL SYSTEMS MACHINE ELEMENTS AND MANUFACTURING, 47(1), pp. 412-420. (2004)
    Suh, S. H., Kang, S. K., Chung, D. H., & Stroud, I. Theory and design of CNC systems. Springer Science & Business Media. (2008)
    tenouk. NETWORK PROGRAMMING LINUX SOCKET PART 2: THE SERVER SIDE ISSUES. Retrieved from Tenouk C & C++: http://www.tenouk.com/Module39a.html. (2013)
    Torrisi, N. M., & Oliveira, J. F. Remote monitoring for high-speed CNC processes over public IP networks using CyberOPC. The International Journal of Advanced Manufacturing Technology, 60(1-4), pp. 191-200. (2012)
    Tsai, M. S., Nien, H. W., & Yau, H. T. Development of integrated acceleration/deceleration look-ahead interpolation technique for multi-blocks NURBS curves. The International Journal of Advanced Manufacturing Technology, 56(5-8), pp. 601-618. (2011)
    Tutorialspoint. Java-Networking. Retrieved from tutorialspoint: http://www.tutorialspoint.com/java/java_networking.htm. (2014)
    Yang, C. R. Application of Genetic Algorithm to Allocating Volumetric Errors for Five-Axis Virtual Machine Tools. Master Thesis. Tainan, Taiwan: National Cheng Kung University. (2011)
    Zhang, Y., Xu, X., & Liu, Y. Numerical control machining simulation: a conprehensive survey. International Journal of Computer Integrated Manufacturing, 24(7), pp. 593-609. (2011)

    下載圖示 校內:2020-07-06公開
    校外:2020-07-06公開
    QR CODE