簡易檢索 / 詳目顯示

研究生: 謝雅婷
Hsieh, Ya-Ting
論文名稱: 生物可分解類高分子摻合體於微觀尺度下之自組裝晶板排列
Microscopic Lamellar Assembly in Poly(L-lactic acid) and Poly(1,6-hexamethylene adipate) Modified with Semicrystalline or Amorphous Polymers
指導教授: 吳逸謨
Woo, Eamor M.
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 80
中文關鍵詞: 聚氧化乙烯左式聚乳酸聚乙烯基甲醚聚己二酸二己酯
外文關鍵詞: poly(ethylene oxide), poly(L-lactic acid), poly(vinyl methyl ether), poly(1,6-hexamethylene adipate)
相關次數: 點閱:134下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗中利用偏光顯微鏡 (polarized optical microscopy,POM)、環境式掃瞄電子顯微鏡 (environmental scanning electron microscopy,E-SEM) 及原子力電子顯微鏡 (atomic force microscopy,AFM),對聚氧化乙烯 [poly(ethylene oxide),PEO]/左式聚乳酸 [poly(L-lactic acid),PLLA] 此相容摻合系統進行 crack 型態及 PLLA 之球晶形貌探討,並對聚乙烯基甲醚 [poly(vinyl methyl ether),PVME]/聚己二酸二己酯 [poly(1,6-hexamethylene adipate),PHA] 此相容摻合系統,進行晶板堆疊方式之觀察。
    PEO/PLLA 摻合系統部份,透過組成比例改變及兩階段的結晶程序(試樣先於 110 oC 使 PLLA 高分子先長晶,再降至室溫使 PEO 高分子長晶),可觀察到 radial 及 irregular 兩種 crack 型態,在組成70/30 時為 crack 型態隨 PEO 含量增加,由 radial crack 轉變為 irregular crack 之過渡階段,當 PEO 含量為 50-60 wt% 具 radial crack,含量 80-90 wt% 為 irregular crack。透過 OM、SEM 及 AFM 觀察水洗蝕刻後之樣品,認為PEO 長晶過程中隨 PEO/PLLA 組成比例改變所出現的 crack 型態,與該組成下 PLLA 受融熔態 PEO 影響所呈現的 PLLA 晶板排列結構有關,而此種 PEO 長晶過程中所引發的 crack,認為是由於 PEO 結晶過程,因高分子鏈段摺疊造成體積變小所形成的空缺。
    PVME/PHA 摻合系統部份,在低膜厚 PHA 純樣品形成正型球晶之結晶溫度 (Tc=38-46 oC) 下,透過加入 20 wt% 的不定形 PVME,使 PVME/PHA 20/80 摻合物之結晶型態,在結晶溫度 Tc=38-45 oC 時呈現負型球晶,而於 Tc=46 oC 時回到正型球晶,且在 Tc=42-44 oC 之間,形成環帶規則度較低的環帶狀球晶。透過 OM 及 AFM 觀察水洗蝕刻樣品,發現PVME/PHA 20/80 分別於 Tc=38、43、46 oC 結晶之試樣,其 PVME 存在於 PHA 球晶中的位置有所不同。而球晶型態 (正型、負型) 的差異來自於 edge-on 晶板的有無。透過 20 wt% PVME 的加入,有助於低結晶溫度 (Tc<46 oC) 下之 PHA 晶板以 edge-on 方式存在,若其 edge-on 晶板週期性的出現,將可得到環帶狀球晶。若對此系統進行交替溫度長晶,可得到類似環帶狀球晶之球晶形貌,且具有週期性的高度變化。

    In this study, the crack behavior and the PLLA crystal morphology of poly(ethylene oxide)/poly(L-lactic acid) (PEO/PLLA) blends and lamellae arrangement of poly(vinyl methyl ether)/poly(1,6-hexamethylene adipate) (PVME/PHA) blend system were studied by using polarized optical microscopy (POM), environmental scanning electron microscopy (E-SEM) and atomic force microscopy (AFM).
    In PEO/PLLA blend system, two types of cracks (radial and irregular cracks) were observed upon changing of the composition and the two-stage crystallization procedure (sample prior cooled to 110 oC for PLLA crystallization and then cooled to ambient temperature for PEO crystallization). For the composition of 70/30, both radial and irregular cracks occur in the sample. However, when the PEO content is 80-90 wt% or 50-60 wt% only irregular crack or radial crack can be observed, respectively. The subsequent observation of etched-sample by using OM, SEM and AFM indicates these two types of cracks have correlation with PLLA lamellae structure under different PEO/PLLA composition. The crack occurs due to the impingement of the later-grown PEO spherulites and which are overlapped with the earlier-grown PLLA spherulites. Such PEO-induced crack was caused by the volume reduction due to the PEO crystallization process.
    In PVME/PHA (20/80) blend, negative spherulites were observed at crystallization temperature (Tc) at 38-45 oC then turn to positive spherulite at Tc=46 oC and above. However, neat PHA forms positive spherulite in the Tc ranging from 38-46 oC. Apparently, amorphous PVME has contribution to the alternating sign of spherulite in PVME/PHA (20/80) blend. By adding 20 wt% PVME, irregularity ring-band spherulite can be observed at Tc=42-44 oC. The observation of etched-sample by using OM and AFM indicates that PVME/PHA 20/80 blend have different kinds of PVME washed-out position under different Tcs (Tc=38, 43, 46 oC). The type of spherulite (negative or positive) is due to the edge-on lamellae exist or not. By adding 20 wt% PVME, PHA can form edge-on lamellae in the lower crystallization temperature (Tc<46 oC). The ring-banded spherulite can be occurred if the edge-on lamellae appear periodically. If the PVME/PHA 20/80 blend with alternating crystallization temperature process, it can form the crystal morphology similar with ring-banded spherulite and has periodic height variation.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 V 圖目錄 VI 符號 XI 第一章 簡介 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 研究方向 2 第二章 文獻回顧及相關原理 3 2.1 PLA 與 PEO 之相關研究 3 2.2 PHA 與 PVME 之相關研究 9 2.3 蝕刻之相關研究 13 2.4 偏光顯微鏡與高分子球晶之相關研究 16 第三章 實驗 23 3.1 實驗所用之高分子及試藥 23 3.2 實驗試樣之製備 24 3.3 實驗所用之儀器 25 第四章 結果與討論 27 4.1 PEO/PLLA 摻合系統 27 4.2 PVME/PHA摻合系統—恆溫結晶 48 4.3 PVME/PHA摻合系統—交替溫度結晶 63 第五章 結論 69 5.1 PEO/PLLA 摻合系統 69 5.2 PVME/PHA摻合系統—恆溫結晶 69 5.3 PVME/PHA摻合系統—交替溫度結晶 70 參考文獻 71 附錄 79

    1. Callaghan T. A., Paul D. R.: Interaction energies for blends of poly(methyl methacrylate), polystyrene, and poly(-methyl styrene) by the critical molecular weight method. Macromolecules, 26, 2439-2450 (1993).
    2. Blümm E., Owen A. J.: Miscibility, crystallization and melting of poly(3-hydroxybutyrate)/poly(L-lactide) blends. Polymer, 36, 4077-4081 (1995).
    3. Focarete M. L., Scandola M., Dobrzynski P., Kowalczuk M.: Miscibility and mechanical properties of blends of (L)-lactide copolymers with atactic poly(3-hydroxybutyrate). Macromolecules, 35, 8472-8477 (2002).
    4. Nurkhamidah S., Woo E. M.: Cracks and ring bands of poly(3-hydroxybutyrate) on pre-crystallized poly(L-lactic acid) template. Ind. Eng. Chem. Res., 50, 4494-4503 (2011).
    5. 郭乃慈:生物可分解聚乳酸與其他聚酯高分子作用下之相行為、結晶型態及動力分析. 國立成功大學化學工程學系碩士論文 (2010).
    6. Chiang, W. J., Woo, E. M.: Comparison of glass transition and interpretation on miscibility in blends of amorphous poly(vinyl methyl ether) with highly crystallizable versus less-crystallizable polyesters. J. Polym. Sci. Pol. Phys., 45, 2899-2911 (2007).
    7. Lin J. H., Woo E. M.: Correlation between interactions, miscibility, and spherulite growth in crystalline/crystalline blends of poly(ethylene oxide) and polyesters. Polymer, 47, 6826-6835 (2006).
    8. Woo E. M., Hsieh Y. T., Chen W. T., Kuo N. T., Wang L. Y.: Immiscibility–miscibility phase transformation in blends of poly(ethylene succinate) with poly(L-lactic acid)s of different molecular weights. J. Polym. Sci. Pol. Phys., 48, 1135-1147 (2010).
    9. Chiang C. H., Woo E. M.: Solvent effects on phase behavior with false UCST in blends of PVPh with aliphatic polyesters. Eur. Polym. J., 42, 1875-1884 (2006).
    10. Mandal T. K., Woo E. M.: Marginal miscibility and solvent-dependent phase behavior in solution-blended poly(vinyl methyl ether)/poly(benzyl methacrylate). Macromol. Chem. Phys., 200, 1143-1149 (1999).
    11. Kim K. S., Chin I. J., Yoon J. S., Choi H. J., Lee D. C., Lee K. H.: Crystallization behavior and mechanical properties of poly(ethylene oxide)/poly(L-lactide)/ poly(vinyl acetate) blends. J. Appl. Polym. Sci., 82, 3618-3626 (2001).
    12. Yam W. Y., Ismail J., Kammer H. W., Schmidt H., Kummerlöwe C.: Polymer blends of poly(-caprolactone) and poly(vinyl methyl ether)-thermal properties and morphology. Polymer, 40, 5545-5552 (1999).
    13. Woo E. M., Chou Y. H., Chiang W. J., Chen I. T., Huang I. H., Kuo N. T.: Amorphous phase behavior and crystalline morphology in blends of poly(vinyl methyl ether) with isomeric polyesters: poly(hexamethylene adipate) and poly(-caprolactone). Polym. J., 42, 391-400 (2010).
    14. Yen K. C., Woo E. M.: Formation of dendrite crystals in poly(ethylene oxide) interacting with bioresourceful tannin. Polym. Bull., 62, 225-235 (2009).
    15. Huang I. H., Chang L., Woo E. M.: Tannin induced single crystalline morphology in poly(ethylene succinate). Macromol. Chem. Phys., 212, 1155-1164 (2011).
    16. Nakafuku C., Sakoda M.: Melting and crystallization of poly(L-lactic acid) and poly(ethylene oxide) binary mixture. Polym. J., 25, 909-917 (1993).
    17. Schulze K., Kressler J., Kammer H. W.: Phase behavior of poly(-caprolactone)/poly(styrene-ran-acrylonitrile) blends exhibiting both liquid-liquid unmixing and crystallization. Polymer, 34, 3704-3709 (1993).
    18. Ma D. Z., Luo X. L., Zhang R., Nishi T.: Miscibility and spherulites in blends of poly(-caprolactone) with ethylene terephthalate-caprolactone copolyester. Polymer, 37, 1575-1581 (1996).
    19. Keith H. D., Padden F. J. Jr., Russell T. P.: Morphological changes in polyesters and polyamides induced by blending with small concentrations of polymer diluents. Macromolecules, 22, 666-675 (1989).
    20. Li W., Yan R. J., Jiang B. Z.: The ring-banded spherulite structure of poly(-caprolactone) in its miscible mixtures with poly(styrene-co-acrylonitrile). Polymer, 33, 889-892 (1992).
    21. Lotz B., Cheng S. Z. D.: A critical assessment of unbalanced surface stresses as the mechanical origin of twisting and scrolling of polymer crystals. Polymer, 46, 577-610 (2005).
    22. Kyu T., Chiu H. W., Guenthner A. J., Okabe Y., Saito H. Inoue T.: Rhythmic growth of target and spiral spherulites of crystalline polymer blends. Phys. Rev. Lett., 83, 2749-2752 (1999).
    23. Schultz J. M.: Self-induced field model for crystal twisting in spherulites. Polymer, 44, 433-441 (2003).
    24. Organ S. J., Barham P. J.: Etching technique for poly(3-hydroxybutyrate) and its copolymers. J. Mater. Sci. Lett., 8, 621-623 (1989).
    25. Shahin M. M., Olley R. H.: Novel etching phenomena in poly(3-hydroxy butyrate) and poly(oxymethylene) spherulites. J. Polym. Sci. Pol. Phys., 40, 124-133 (2002).
    26. Chen J., Yang D.: Rhythmic growth of ring-banded spherulites in blends of liquid crystalline methoxy-poly(aryl ether ketone) and poly(aryl ether ether ketone). J. Polym. Sci. Pol. Phys., 45, 3011-3024 (2007).
    27. Wang Z., Li Y., Yang J., Gou Q., Wu Y., Wu X., Liu P., Gu Q.: Twisting of lamellar crystals in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) ring-banded spherulites. Macromolecules, 43, 4441-4444 (2010).
    28. Li J., Li Y., Zhou J., Jiang Z., Chen P., Wang Y., Gu Q., Wang Z.: Increasing lamellar twisting frequency with poly(lactic acid) segments incorporation in poly(trimethylene terephthalate) ring-banded spherulites. Macromolecules, 44, 2918-2925 (2011).
    29. 陳宜姿:聚乳酸與聚氧化乙烯兩結晶型高分子混掺系統之相容性與結晶型態. 國立成功大學化學工程學系碩士論文 (2009).
    30. Chao C. C., Chen C. K., Chiang Y. W., Ho R. M.: Banded spherulites in PS-PLLA chiral block copolymers. Macromolecules, 41, 3949-3956 (2008).
    31. Maillard D., Prud’homme R. E.: Crystallization of ultrathin films of polylactides: From chain chirality to lamella curvature and twisting. Macromolecules, 41, 1705-1712 (2008).
    32. Chen H., Pyda M., Cebe P.: Non-isothermal crystallization of PET/PLA blends. Thermochim. Acta, 492, 61-66 (2009).
    33. Cossement D., Gouttebaron R., Cornet V., Viville P., Hecq M., Lazzaroni R.: PLA-PMMA blends: A study by XPS and ToF-SIMS. Appl. Surf. Sci., 252, 6636-6639 (2006).
    34. Gajria A. M., Davé V., Gross R. A., McCarthy S. P.: Miscibility and biodegradability of blends of poly(lactic acid) and poly(vinyl acetate). Polymer, 37, 437-444 (1996).
    35. Yang J. M., Chen H. L., You J. W., Hwang J. C.: Miscibility and crystallization of poly(L-lactide)/poly(ethylene glycol) and poly(L-lactic)/poly(-caprolactone) blends. Polym. J., 29, 657-662 (1997).
    36. Ikehara T., Nishikawa Y., Nishi T.: Evidence for the formation of interpenetrated spherulites in poly(butylene succinate-co-butylene carbonate)/poly(L-lactic acid) blends investigated by atomic force microscopy. Polymer, 44, 6657-6661 (2003).
    37. Desai N. P., Hubbell J. A.:Solution technique to incorporate polyethylene oxide and other water-soluble polymers into surfaces of polymeric biomaterials. Biomaterials, 12, 144-153 (1991).
    38. Desai N. P., Hubbell J. A.: Surface physical interpenetrating networks of poly(ethylene terephthalate) and poly(ethylene oxide) with biomedical applications. Macromolecules, 25, 226-232 (1992).
    39. Lee J. H., Kim K. O., Ju, Y. M.: Polyethylene oxide additive-entrapped polyvinyl chloride as a blood bag material. J. Biomed. Mater. Res. B, 48, 328-334 (1999).
    40. Rozema F. R., de Bruijn W. C., Bos R. R. M., Boering G., Nijenhuis A. J., Pennings A. J.: Late tissue response to bone-plates and screws of poly(L-lactide) used for fracture fixation of the zygomatic bone. In: (2nd edn. ed.), Doherty P.J., Williams R. L., Williams D. F., Editors, Biomaterial — Tissue Interfaces, Advances in Biomaterials, Elsevier, Amsterdam, 10, 349–355 (1992).
    41. Bergsma J. E., Rozema F. R., Bos R. R. M., de Bruijn W. C., Boering G. Pennings A. J.: In vivo degradation and biocompatibility study of in vitro pre-degraded as-polymerized polylactide particles. Biomaterials, 16, 267-274 (1995).
    42. Chang L., Woo E. M.: Effect of a miscible polymeric diluent on complex formation between isotactic and syndiotactic poly(methyl methacrylate). Ind. Eng. Chem. Res., 48, 3422-3440 (2009).
    43. Wu W. B., Chiu W. Y., Liau W. B.: Casting solvent effect on crystallization behavior of poly(vinyl acetate)/poly(ethylene oxide) blends: DSC study. J. Appl. Polym. Sci., 64, 411-421 (1997).
    44. Marentette J. M., Brown G. R.: The crystallization of poly(ethylene oxide) in blends with neat and plasticized poly(vinyl chloride). Polymer, 39, 1415–1427 (1998).
    45. Pedrosa P., Pomposo J. A., Calahorra E., Cortazar M.: On the glass transition behavior, interaction energies, and hydrogen-bonding strengths of binary poly(p-vinylphenol)/ polyether blends. Macromolecules, 27, 102-109 (1994).
    46. Okerberg B. C., Marand H.: Crystal morphologies in thin films of PEO/PLLA blends. J. Mater. Sci., 42, 4521-4529 (2007).
    47. Zhang G., Cao Y., Jin L., Zheng P., Horn R. M. V., Lotz B., Cheng S. Z. D., Wang W.: Crystal growth pattern changes in low molecular weight poly(ethylene oxide) ultrathin films. Polymer, 52, 1133-1140 (2011).
    48. 陳丕哲: PHB 及 PHBV 摻合體的結晶動力與形態研究. 淡江大學化學工程與材料工程學系碩士論文 (2004).
    49. Chee M. J. K., Ismail J., Kummerlöwe C., Kammer, H. W.: Study on miscibility of PEO and PCL in blends with PHB by solution viscometry. Polymer, 43, 1235-1239 (2002).
    50. Pan P., Zhao L., Zhu B., He Y., Inoue Y.: Fractionated crystallization and self-nucleation behavior of poly(ethylene oxide) in its miscible blends with poly(3-hydroxybutyrate). J. Appl. Polym. Sci., 117, 3013-3022 (2010).
    51. Qiu Z., Ikehara T., Nishi, T.: Unique morphology of poly(ethylene succinate)/poly(ethylene oxide) blends. Macromolecules, 35, 8251-8254 (2002).
    52. Qiu Z., Ikehara T., Nishi, T.: Miscibility and crystallization in crystalline/crystalline blends of poly(butylene succinate)/poly(ethylene oxide). Polymer, 44, 2799-2806 (2003).
    53. Ikehara T., Kurihara H., Kataoka T.: Effect of poly(butylene succinate) crystals on spherulitic growth of poly(ethylene oxide) in binary blends of the two substances. J. Polym. Sci. Pol. Phys., 47, 539-547 (2009).
    54. He Y., Asakawa N., Inoue Y.: Biodegradable blends of high molecular weight poly(ethylene oxide) with poly(3-hydroxypropionic acid) and poly(3-hydroxybutyric acid): A miscibility study by DSC, DMTA and NMR spectroscopy. Polym. Int., 49, 609-617 (2000).
    55. Zhao L., Kai W., He Y., Zhu B., Inoue Y.: Effect of aging on fractional crystallization of poly(ethylene oxide) component in poly(ethylene oxide)/poly(3-hydroxybutyrate) blends. J. Polym. Sci. Pol. Phys., 43, 2665-2676 (2005).
    56. Nakafuku C.: Effects of molecular weight on the melting and crystallization of poly(L-lactic acid) in a mixture with poly(ethylene oxide). Polym. J., 28, 568-575 (1996).
    57. Huang S., Jiang S., Chen X., An L.: Dendritic superstructures and structure transitions of asymmetric poly(L-lactide-b-ethylene oxide) diblock copolymer thin films. Langmuir, 25, 13125-13132 (2009).
    58. Hashida T., Jeong Y. G., Hua Y., Hsu S. L., Paul C. W.: Spectroscopic study on morphology evolution in polymer blends. Macromolecules, 38, 2876-2882 (2005).
    59. Robeson L. M., Hale W. F., Merriam C. N.: Miscibility of the poly(hydroxyl ether) of bisphenol A with water-soluble polyethers. Macromolecules, 14, 1644-1650 (1981).
    60. Pedross P., Pomposo J. A., Calahorra E., Cortazar M.: on the glass transition behavior, interaction energies, and hydrogen-bonding strengths of binary poly(p-vinylphenol)/polyether blends. Macromolecules, 27, 102-109 (1994).
    61. Lezcano E. G., de Arellano D. R., Prolongo M. G., Coll C. S.: Miscibility and interactions in poly(vinyl methyl ether)/poly(4-hydroxystyrene) blends. Polymer, 39, 1583-1589 (1998).
    62. Chakraborty S. S., Maiti N., Mandal B. M., Bhattacharyya S. N.: Miscibility and phase diagrams for poly(vinyl methyl ether) and polyacrylate blend systems. Polymer, 34, 111-114 (1993).
    63. Woo E. M., Juang Y. T.: Immiscibility, upper critical solution temperature, and miscibility in blends of poly(vinyl ether)s with polyacrylic: Effects of pendant groups. J. Polym. Sci. Pol. Phys., 45, 1521-1534 (2007).
    64. Mittal A., Soni R. K., Dutt K., Singh S.: Scanning electron microscopic study of hazardous waste flakes of polyethylene terephthalate (PET) by aminolysis and ammonolysis. J. Hazard. Mater., 178, 390-396 (2010).
    65. http://www.microscopyu.com/articles/polarized/polarizedintro.html
    66. Marentette J. M., Brown G. R.: Polymer Spherulites I birefringence and morphology. J. Chem. Educ., 70, 435-439 (1993).
    67. http://www.microscopyu.com/articles/polarized/birefringenceintro.html
    68. Yang J. P., Liao Q., Zhou J. J., Jiang X., Wang X. H., Zhang Y., Jiang S. D., Yan S. K., Li L.: What determines the lamellar orientation on substrates? Macromolecules, 44, 3511-3516 (2011).
    69. Wang Z. B., Hu Z. J., Chen Y. Z. Gong Y. M., Huang H. Y., He T. B.: Rhythmic growth-induced concentric ring-banded structures in poly(-caprolactone) solution-casting films obtained at the slow solvent evaporation rate. Macromolecules, 40, 4381-4385 (2007).
    70. Wang W., Jin Y., Yang X., Su Z.: Chain orientation and distribution in ring-banded spherulites formed in poly(ester urethane) multiblock copolymer. J. Polym. Sci. Pol. Phys., 48, 541-547 (2010).
    71. Ikehara T., Jinnai H., Kaneko T., Nishioka H., Nishi T.: Local lamellar structures in banded spherulites analyzed by three-dimensional electron tomography. J. Polym. Sci. Pol. Phys., 45, 1122-1125 (2007).
    72. Rosenthal M., Anokhin D. V., Luchnikov V. A., Davies R. J., Riekel C., Burghammer M., Bar G., Ivanov D. A.: Microstructure of banded polymer spherulites: Studies with micro-focus X-ray diffraction. IOP Conf. Ser.: Mater. Sci. Eng., 14, 012014 (2010).
    73. Keith H. D., Padden F. J. Jr.: A phenomenological theory of spherulitic crystallization. J. Appl. Phys., 34, 2409-2421 (1963).

    下載圖示 校內:2013-08-10公開
    校外:2013-08-10公開
    QR CODE