簡易檢索 / 詳目顯示

研究生: 林上民
Lin, Shang-Min
論文名稱: 探討Spen及Rap1在果蠅邊境細胞移動過程中對引導訊息之作用
The Role of Spen and Rap1 in Guiding Signals during Border Cell Migration
指導教授: 張純純
Jang, Chuen-Chuen
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 61
中文關鍵詞: 細胞遷移Rap1 small GTPaseEGFR/PVR路徑果蠅Spen
外文關鍵詞: cell migration, small GTPase, EGFR pathway, Drosophila
相關次數: 點閱:240下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在細胞移動過程當中,引導訊息分子經常利用濃度梯度的方式引導移動中的細胞,使其移動至正確的位置。在果蠅邊境細胞遷移過程中EGFR/PVR為其主要引導訊息並影響其移動方向。當rap1基因發生突變或是過量表現其持續活化態Rap1V12時會破壞原本其突觸的方向性進而影響細胞遷移。本篇研究透過基因篩選的方式找到可能參與此路徑的基因spen,其不同突變等位基因皆可使Rap1V12造成的移動不全成為正常移動。反之,過量表現Spen則會加劇其結果,使細胞更加無法移動。利用PZ spen果蠅發現spen轉錄於濾泡細胞及邊境細胞當中,顯示其可能在邊境細胞當中有功能。使邊境細胞中的spen不表現時,邊境細胞依然可以正常移動,顯示可能有其他未知路徑行使相同的功能。過去研究指出spen影響EGFR/PVR下游Yan的表現量,因此透過Yan在核中的表現量,本篇研究探討Rap1及Spen對訊息路徑EGFR/PVR的調控,並提出一種新的調控機制。

    As preliminary data shows that rap1 mutant or over-expression (OE) of constitutively active or inactive Rap1 cause migration defect, this thesis screened for which gene specifically will interact with rap1 genetically by using RNAi or mutant lines of every single gene. split ends (spen) is found to suppress the migration defect phenotype. About 80 percent of the stage 10 egg chambers have the border cells normally migrate to oocyte boundary in the flies with different alleles of spen mutant with Rap1V12 OE, compared with 30 in Rap1V12 OE only. The spen over-expression, on the contrary, can enhance the migration defect caused by Rap1V12 OE. The spen PZ line shows the transcription pattern of spen is in follicle cells and border cells during oogenesis. The spen mosaic mutant clone specifically in border cell shows that spen mutant clone in the border cell do not affect the migration process, which means the spen might be redundant to other genes in regulation of border cell migration. Previously, Spen protein are suggested to regulate Yan, an EGFR downstream transcription factor. To know the role of spen in EGFR/PVR pathway, the EGFR/PVR downstream Yan protein were stained as a reporter for this guiding signaling pathway. The genetic interaction between spen, yan and Rap1 were studied in order to know their genetic relationship. Both yan mutant and over-expression of yan enhance the Rap1V12 caused migration defect. Previous paper shows that Yan expression and down-regulation is required for border cell migration. It means that Yan expression level is spatially controlled by EGFR/PVR signaling that possibly through Rap1 and spen.

    Chinese Abstract (中文摘要) I Abstract II Acknowledgements V Table of Contents VI Contents of Tables IX Contents of Figures X Contents of Appendices XI Abbreviation List XII 1. Research Background 1 1-1 Collective cell migration 1 1-2 Border cell migration 2 1-3 EGFR/PVR guiding signals in border cell migration 3 1-4 Rap1 small GTPase 4 1-5 Rap1 in border cell migration 5 1-6 split ends 5 1-7 Research objectives 6 2. Materials and Methods 8 2-1 Drosophila strains and genetics 8 2-2 Border cell migration quantification 8 2-3 Drosophila ovary dissection and immunohistochemistry 8 2-4 Drosophila egg chamber mutant clone and MARCM 10 2-5 Quantification and statistics of Yan expression 11 3. Results 12 3-1 Screen for Rap1 pathway interacting genes 12 3-2 spen heterozygous mutants rescue the migration defect 14 3-3 spen over-expression in border cells 14 3-4 spen expression pattern in egg chamber 15 3-5 spen loss-of-function analysis through MARCM 16 3-6 Yan staining analysis of rap1 and spen as an EGFR/PVR signal reporter 16 4. Discussion 19 4-1 Different aspects of effect of guiding signals on border cells 19 4-2 spen homozygous mutant clone 20 4-3 Yan staining analysis of rap1 and spen as an EGFR/PVR signal reporter 21 References 23 Tables 29 Figures 34 Appendices 57

    Angeli, V., and Randolph, G. J. Inflammation, lymphatic function, and dendritic cell migration. Lymphatic Research and Biology 4, 217-228, 2006.

    Bauer, H., Demerec, M., and Kaufmann, B. P. X-ray induced chromosomal alterations in drosophila melanogaster. Genetics 23, 610-630, 1938.

    Bianco, A., Poukkula, M., Cliffe, A., Mathieu, J., Luque, C. M., Fulga, T. A., and Rorth, P. Two distinct modes of guidance signalling during collective migration of border cells. Nature 448, 362-365, 2007.

    Boettner, B., Harjes, P., Ishimaru, S., Heke, M., Fan, H. Q., Qin, Y., Van Aelst, L., and Gaul, U. The af-6 homolog canoe acts as a rap1 effector during dorsal closure of the drosophila embryo. Genetics 165, 159-169, 2003.

    Bos, J. L., de Rooij, J., and Reedquist, K. A. Rap1 signalling: Adhering to new models. Nature Reviews Molecular Cell Biology 2, 369-377, 2001.

    Bronner-Fraser, M. Neural crest cell formation and migration in the developing embryo. The Federation of American Societies for Experimental Biology Journal 8, 699-706, 1994.

    Carmena, A. A big new job for small gtpases. Small GTPases 3, 159-162, 2012.

    Chaffer, C. L., and Weinberg, R. A. A perspective on cancer cell metastasis. Science 331, 1559-1564, 2011.

    Chen, F., and Rebay, I. Split ends, a new component of the drosophila egf receptor pathway, regulates development of midline glial cells. Current Biology 10, 943-946, 2000.

    Cooley, L., Kelley, R., and Spradling, A. Insertional mutagenesis of the drosophila genome with single p elements. Science 239, 1121-1128, 1988.

    Dickson, B. J., van der Straten, A., Dominguez, M., and Hafen, E. Mutations modulating raf signaling in drosophila eye development. Genetics 142, 163-171, 1996.

    Doroquez, D. B., Orr-Weaver, T. L., and Rebay, I. Split ends antagonizes the notch and potentiates the egfr signaling pathways during drosophila eye development. Mechanisms of Development 124, 792-806, 2007.

    Duchek, P., Somogyi, K., Jekely, G., Beccari, S., and Rorth, P. Guidance of cell migration by the drosophila pdgf/vegf receptor. Cell 107, 17-26, 2001.

    Egelhoff, T. T., and Spudich, J. A. Molecular genetics of cell migration: Dictyostelium as a model system. Trends in Genetics 7, 161-166, 1991.

    Ewald, A. J., Brenot, A., Duong, M., Chan, B. S., and Werb, Z. Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Developmental Cell 14, 570-581, 2008.

    Fitzgerald, J. S., Busch, S., Wengenmayer, T., Foerster, K., de la Motte, T., Poehlmann, T. G., and Markert, U. R. Signal transduction in trophoblast invasion. Chemical Immunology and Allergy 88, 181-199, 2005.

    Friedl, P., and Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nature Reviews Molecular Cell Biology 10, 445-457, 2009.

    Gloerich, M., and Bos, J. L. Regulating rap small g-proteins in time and space. Trends in Cell Biology 21, 615-623, 2011.

    Golic, K. G., and Lindquist, S. The flp recombinase of yeast catalyzes site-specific recombination in the drosophila genome. Cell 59, 499-509, 1989.

    Gotoh, T., Hattori, S., Nakamura, S., Kitayama, H., Noda, M., Takai, Y., Kaibuchi, K., Matsui, H., Hatase, O., Takahashi, H., and et al. Identification of rap1 as a target for the crk sh3 domain-binding guanine nucleotide-releasing factor c3g. Molecular and Cellular Biology 15, 6746-6753, 1995.

    Hogan, C., Serpente, N., Cogram, P., Hosking, C. R., Bialucha, C. U., Feller, S. M., Braga, V. M., Birchmeier, W., and Fujita, Y. Rap1 regulates the formation of e-cadherin-based cell-cell contacts. Molecular and Cellular Biology 24, 6690-6700, 2004.

    Inaki, M., Vishnu, S., Cliffe, A., and Rorth, P. Effective guidance of collective migration based on differences in cell states. Proceedings of the National Academy of Sciences of the United States of America 109, 2027-2032, 2012.

    Jang, A. C., Chang, Y. C., Bai, J., and Montell, D. Border-cell migration requires integration of spatial and temporal signals by the btb protein abrupt. Nature Cell Biology 11, 569-579, 2009.

    Keller, R. Cell migration during gastrulation. Current Opinion in Cell Biology 17, 533-541, 2005.

    Kitayama, H., Sugimoto, Y., Matsuzaki, T., Ikawa, Y., and Noda, M. A ras-related gene with transformation suppressor activity. Cell 56, 77-84, 1989.

    Kooistra, M. R., Dube, N., and Bos, J. L. Rap1: A key regulator in cell-cell junction formation. Journal of Cell Science 120, 17-22, 2007.

    Kramer, N., Walzl, A., Unger, C., Rosner, M., Krupitza, G., Hengstschlager, M., and Dolznig, H. In vitro cell migration and invasion assays. Mutation Research 752, 10-24, 2013.

    Krawczyk, W. S. A pattern of epidermal cell migration during wound healing. Journal of Cell Science 49, 247-263, 1971.

    Lamalice, L., Le Boeuf, F., and Huot, J. Endothelial cell migration during angiogenesis. Circulation Research 100, 782-794, 2007.

    Lauffenburger, D. A., and Horwitz, A. F. Cell migration: A physically integrated molecular process. Cell 84, 359-369, 1996.

    Lee, J. H., Cho, K. S., Lee, J., Kim, D., Lee, S. B., Yoo, J., Cha, G. H., and Chung, J. Drosophila pdz-gef, a guanine nucleotide exchange factor for rap1 gtpase, reveals a novel upstream regulatory mechanism in the mitogen-activated protein kinase signaling pathway. Molecular and Cellular Biology 22, 7658-7666, 2002.

    Lee, T., and Luo, L. Mosaic analysis with a repressible cell marker (marcm) for drosophila neural development. Trends in Neurosciences 24, 251-254, 2001.

    Legare, S., Cavallone, L., Mamo, A., Chabot, C., Sirois, I., Magliocco, A., Klimowicz, A., Tonin, P. N., Buchanan, M., Keilty, D., Hassan, S., Laperriere, D., Mader, S., Aleynikova, O., and Basik, M. The estrogen receptor cofactor spen functions as a tumor suppressor and candidate biomarker of drug responsiveness in hormone-dependent breast cancers. Cancer Research 75, 4351-4363, 2015.

    Lin, H. V., Doroquez, D. B., Cho, S., Chen, F., Rebay, I., and Cadigan, K. M. Splits ends is a tissue/promoter specific regulator of wingless signaling. Development 130, 3125-3135, 2003.

    Louis, S. F., and Zahradka, P. Vascular smooth muscle cell motility: From migration to invasion. Journal of Clinical and Experimental Cardiology 15, 75-85, 2010.

    Mar e, A. F., Panfilov, A. V., and Hogeweg, P. Migration and thermotaxis of dictyostelium discoideum slugs, a model study. Journal of Theoretical Biology 199, 297-309, 1999.

    McDonald, J. A., Pinheiro, E. M., Kadlec, L., Schupbach, T., and Montell, D. J. Multiple egfr ligands participate in guiding migrating border cells. Developmental Biology 296, 94-103, 2006.

    McManus, M. F., and Golden, J. A. Neuronal migration in developmental disorders. Journal of Child Neurology 20, 280-286, 2005.

    Montell, D. J. Moving right along: Regulation of cell migration during drosophila development. Trends in Genetics 10, 59-62, 1994.

    Montell, D. J. Border-cell migration: The race is on. Nature Reviews Molecular Cell Biology 4, 13-24, 2003.

    Montell, D. J., Rorth, P., and Spradling, A. C. Slow border cells, a locus required for a developmentally regulated cell migration during oogenesis, encodes drosophila c/ebp. Cell 71, 51-62, 1992.

    Montell, D. J., Yoon, W. H., and Starz-Gaiano, M. Group choreography: Mechanisms orchestrating the collective movement of border cells. Nature Reviews Molecular Cell Biology 13, 631-645, 2012.

    O'Keefe, D. D., Gonzalez-Nino, E., Burnett, M., Dylla, L., Lambeth, S. M., Licon, E., Amesoli, C., Edgar, B. A., and Curtiss, J. Rap1 maintains adhesion between cells to affect egfr signaling and planar cell polarity in drosophila. Developmental Biology 333, 143-160, 2009.

    Ohshiro, T., Emori, Y., and Saigo, K. Ligand-dependent activation of breathless fgf receptor gene in drosophila developing trachea. Mechanisms of Development 114, 3-11, 2002.

    Querenet, M., Goubard, V., Chatelain, G., Davoust, N., and Mollereau, B. Spen is required for pigment cell survival during pupal development in drosophila. Developmental Biology 402, 208-215, 2015.

    Riese, D. J., and Stern, D. F. Specificity within the egf family/erbb receptor family signaling network. Bioessays 20, 41-48, 1998.

    Rorth, P. Initiating and guiding migration: Lessons from border cells. Trends in Cell Biology 12, 325-331, 2002.

    Rorth, P., Szabo, K., Bailey, A., Laverty, T., Rehm, J., Rubin, G. M., Weigmann, K., Milan, M., Benes, V., Ansorge, W., and Cohen, S. M. Systematic gain-of-function genetics in drosophila. Development 125, 1049-1057, 1998.

    Sanchez-Madrid, F., and del Pozo, M. A. Leukocyte polarization in cell migration and immune interactions. The European Molecular Biology Organization Journal 18, 501-511, 1999.

    Schupbach, T. Germ line and soma cooperate during oogenesis to establish the dorsoventral pattern of egg shell and embryo in drosophila melanogaster. Cell 49, 699-707, 1987.

    Silver, D. L., and Montell, D. J. Paracrine signaling through the jak/stat pathway activates invasive behavior of ovarian epithelial cells in drosophila. Cell 107, 831-841, 2001.

    St Johnston, D. The art and design of genetic screens: Drosophila melanogaster. Nature Reviews Genetics 3, 176-188, 2002.

    Takai, Y., Sasaki, T., and Matozaki, T. Small gtp-binding proteins. Physiological Reviews 81, 153-208, 2001.

    Theodosiou, N. A., and Xu, T. Use of flp/frt system to study drosophila development. Methods 14, 355-365, 1998.

    Theveneau, E., and Mayor, R. Neural crest delamination and migration: From epithelium-to-mesenchyme transition to collective cell migration. Developmental Biology 366, 34-54, 2012.

    Van Haastert, P. J., and Devreotes, P. N. Chemotaxis: Signalling the way forward. Nature Reviews Molecular Cell Biology 5, 626-634, 2004.

    Wang, Y. C., Khan, Z., and Wieschaus, E. F. Distinct rap1 activity states control the extent of epithelial invagination via alpha-catenin. Developmental Biology 25, 299-309, 2013.

    Weijer, C. J. Collective cell migration in development. Journal of Cell Science 122, 3215-3223, 2009.

    Wiellette, E. L., Harding, K. W., Mace, K. A., Ronshaugen, M. R., Wang, F. Y., and McGinnis, W. Spen encodes an rnp motif protein that interacts with hox pathways to repress the development of head-like sclerites in the drosophila trunk. Development 126, 5373-5385, 1999.

    Wittchen, E. S., Aghajanian, A., and Burridge, K. Isoform-specific differences between rap1a and rap1b gtpases in the formation of endothelial cell junctions. Small GTPases 2, 65-76, 2011.

    Xu, T., and Rubin, G. M. Analysis of genetic mosaics in developing and adult drosophila tissues. Development 117, 1223-1237, 1993.

    無法下載圖示 校內:2022-09-11公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE