| 研究生: |
高維駿 Kao, Wei-Chun |
|---|---|
| 論文名稱: |
微波還原法製備鉑-中孔氧化矽與金-中孔氧化矽及其特性之研究 Preparation and characteration of mesoporous silica supported Pt and Au nanoparticles by microwave synthesis |
| 指導教授: |
黃文星
Hwang, Weng-Sing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 中孔洞氧化矽 、APTMS 、Pt 、Au 、奈米顆粒 、螯合劑 、微波還原 |
| 外文關鍵詞: | mesoporous silica, APTMS, Pt, Au, nanoparticle, Chelating agent, microwave synthesis |
| 相關次數: | 點閱:91 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要分為三部份,其中第一部份為中孔洞氧化矽之合成。本研究利用小角度散 X 光散射(Small Angle X-Ray Scattering, SAXS)、氮氣等溫吸附脫附量測儀(N2 adsorption/desorption measurement)和熱重/熱差分析儀(Thermal Analyzers/Mass spectrometer)探討煅燒前後氧化矽結晶結構、孔洞結構及熱性質。第二部份則是以後製備法(post-asynthesis)利用3-氨丙基三甲氧基矽烷(3-Aminopropyltrimethoxysilane, APTMS)進行氮官能基表面改質,改質後的樣品利用高解析傅立葉紅外線吸收光譜(High resolution fourier transform infrared spectroscopy, HRFTIR )觀察表面官能基的變化並探討APTMS含量對中孔氧化矽晶體結構(crystal structure)與孔洞形態的影響。第三部份是利用螫合劑以微波還原法,將 Pt 奈米顆粒及 Au 奈米顆粒負載於中孔氧化矽的表面,探討螯合劑及氮官能基對於還原奈米顆粒的影響。研究利用高解析穿透式電子顯微鏡(High resolution transmission electron microscopy, HRTEM)和粉末 X 光繞射(X-ray diffraction, XRD)觀察中孔洞氧化矽形貌、分散情況及結晶結構。
第一部份的 SAXS 結果顯示,合成出的中孔洞氧化矽在 550℃ 煅燒前後,結晶結構差異不大。第二部份研究結果顯示,表面氮官能基改質不會影響中孔洞氧化矽的結晶結構,顯示氮官能基改質對於中孔洞氧化矽的化學性質影響不大;氮氣等溫吸附脫附量測結果顯示,孔洞內殘留之界面活性劑不會影響表面改質的效果。第三部份的TEM結果顯示,利用微波還原法配合螯合劑可製備平均粒徑為 0.61 nm 的 Pt 奈米顆粒和 1.74 nm 的 Au 奈米顆粒。表面氮官基可穩定 Pt 奈米顆粒,避免量子尺寸效應的發生並均勻散佈奈米顆粒;而在 Au 奈米顆粒部份,當中孔洞氧化矽與氮官能基的重量比為 1:1 和 1:0.6 時,Au 奈米顆粒可均勻散佈,當氮官能基比例下降為 1:0.2 時,Au 奈米顆粒會出現團聚的現象。
The study of mesoporous silica supported metal nanoparticles included three parts. In the first part, highly ordered mesoporous silicas have been synthesized by the use of poly-(alkylene oxide) block copolymers. The crystal structure、porous structure and thermal properties of mesoporous silicas and calcined mesoporous silicas were studied by Small Angle X-Ray Scattering (SAXS)、N2 adsorption/desorption measurement and Thermal Analyzers/Mass spectrometer (TG/DTA). In the second part, the surface of Mesoporous silica functionalized with amine group prior to addition of APTMS by post-synthesis. The samples were studied by High Resolution Fourier Transform Infrared Spectroscopy (HRFTIR) and the effect of APTMS concentration on the crystal structure and porous structure were also studied. In the third part, the Pt nanoparticles and Au nanoparticles integrate with mesoporous silica by chelating agent assisted with microwave synthesis. The effects of APTMS concentration and chelating agent on reducing metal nanoparticles were also studied. The surface morphology of mesoporous silicas after microwave synthesis and the crystal structure of noble nanopartice were studied by High Resolution Transmission Electron Microscopy (HRTEM) and x-Ray Diffraction (XRD).
In the first part, the SAXS showed that the as-synthesis mesoporous silicas had similar crystal structure to calcined mesoporous silicas. In he second part, the results showed that the reaction of surface mondification did not affect the crystal structure of mesoporous silica which means the mesoporous silica had chemical stability. The N2 adsorption/desorption measurement showed that the surface mondification of as-synthesis sample was similar to calcined sample. In the last part, the HRTEM showed the average size of Pt nanoparticles and Au nanoparticles were about 0.61 nm and 1.74 nm. The Pt nanoparticles were extremelly small in size without the quantum size effect because the amine group could stable the Pt nanoparticles. Also, the Pt particles were highly dispersed by amine group assisted. When the weight ratio of mesoporous silicas (calcined mesoporous silicas) and APTMS were 1:1 and 1:0.6, the Au nanopartilce were highly dispersed. Meanwhile, the Au nanoparticles clustered, when the weight ratio reduced to 1:0.2.
參考文獻
1. IUPAC Manual of symbols and terminology. Colloid and Surface Chemistry. Pure Appl. Chem., 1972. Appendix 2,Part 1.
2. 吳嘉文, 中孔洞奈米材料之孔洞方向控制及其應用. 工業材料雜誌, 2009. 274期.
3. J. S. Dailey and T. J. Pinnavaia, Silica-pillared derivatives of H+-magadiite, a crystalline hydrated silica. chemistry of materials, 1992. 4: p. 855.
4. T. Yanagisawa, K. Kuroda and C. Kato, Organic Derivatives of Layered Polysilicates. II. Reaction of Magadiite and Kenyaite with Diphenylmethylchlorosilane. Bulletin of the Chemical Society of Japan, 1988. 61.
5. A. M. Khenkin and R. Neumann, Vanadium-substituted MCM-41 zeolites as catalysts for oxidation of alkanes with peroxides. 1996(23).
6. Wade, A., Weller, P. J., Handbook of pharmaceutical excipients. 1994.
7. Ben-Naim, Arieh, Hydrophobic interactions. 1980.
8. D. Zhao, Q. Huo,J. Feng, B. F. Chmelka and G. D.Stucky, Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. J. Am. Chem. Soc., 1998. 120.
9. 楊淑雯, 高憲明, 中孔洞分子篩 SBA-15 之表面修飾. 國立中央大學化學研究所碩士論文, 2004.
10. J.F.Diaz.K.J.Balkus Jr, F.Bedioui, V. Kurshev and L. Kevan, Synthesis and Characterization of Cobalt−Complex Functionalized MCM-41. Chemistry of materials, 1997. 9.
11. X. Feng, G.E.Fryxell, L.-Q. Wang, A. Y. Kim, J. Liu and K.M. Kemner, Functionalized Monolayers on Ordered Mesoporous Supports. science, 1997. 276.
12. R. Ryoo, C.H. Ko, J.M. Kim and R. Howe, Preparation of nanosize Pt clusters using ion exchange of Pt(NH3)42+ inside mesoporous channel of MCM-41. catalysis letters, 1996. 37.
13. U. Junges, F. Schuth , G. Schmid, Y. Uchida , R. Schlogl, Synthesis and characterization of catalysts based on ligand-stabilized clusters incorporated in mesoporous oxides. Phys. Chem., 1997. 101.
14. C. T. Kresge, M.E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992. 359.
15. S.S. Park, Y.K. Park, S.J. Choe and D.H. Park, Quantitative incorporation of Pt nanoparticle by coordination of Pt precursor with APTMS-anchored SiMCM-41. J Sol-Gel Sci Techn, 2007. 42: p. 35.
16. J.S. Beck, U.S. Patent. 296, 5057., 1991.
17. C. T. Kresge, M.E. Leonowicz , W. J. Roth and J. C. Vartuli, U.S. Patent. 684, 5098., 1992.
18. J.S. Beck, C. T. Kresge,S.B. McCullen,W.J. Roth and J.C. Vartuli, U.S. Patent. 363, 5304., 1994.
19. R. Ryoo , J.M. Kim, C. H. Ko and D.H. Shin, Disordered Molecular Sieve with Branched Mesoporous Channel Network. J. Phys. Chem., 1996. 100: p. 17718.
20. Y. Niu, L.K. Yeung and R. M. Crooks, Size-Selective Hydrogenation of Olefins by Dendrimer-Encapsulated Palladium Nanoparticles. J. Am. Chem. Soc., 2001. 123.
21. R.W.J. Scott, O.M.Wilson, S.K. Oh, E. A. Kenik and R. M. Crooks, Bimetallic Palladium−Gold Dendrimer-Encapsulated Catalysts. J. Am. Chem. Soc., 2004. 126.
22. C.W. Chen, D. Tano and M.Akashi, Colloidal Platinum Nanoparticles Stabilized by Vinyl Polymers with Amide Side Chains: Dispersion Stability and Catalytic Activity in Aqueous Electrolyte Journal of Colloid and Interface Science, 2000. 225(2).
23. C.W. Chen, T.Takezako, K. Yamamoto, T. Serizawa and M. Akashi, Poly(N-vinylisobutyramide)-stabilized platinum nanoparticles: synthesis and temperature-responsive behavior in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000. 169.
24. M. Adlim , M.A.Bakar, K.Y. Liew and J. Ismail, Synthesis of chitosan-stabilized platinum and palladium nanoparticles and their hydrogenation activity Journal of Molecular Catalysis A: Chemical, 2004. 212.
25. J. Zhang, X.Yan and H. Liu, The effects of tin on the hydrogenation of α-diketones over platinum nanoclusters. Journal of Molecular Catalysis A: Chemical, 2001. 176.
26. J.E. Mark and A.B.R.Mayer, Polymer-protected, colloidal platinum nanocatalysts. Polymer Bulletin, 1996. 37.
27. T W. Tu, H. Liu, and K.Y. Liew, Preparation and Catalytic Properties of Amphiphilic Copolymer-Stabilized Platinum Metals Colloids. Journal of Colloid and Interface Science, 2000. 229(2): p. 453-461.
28. L.U. Hua, W. Yi, A.J. TIAN and H.F. LIU, Study on the formation of noble metal colloids in the presence of n- substituted polyacryla-mide containing alicyclic amino groups. acta polymerica sinica, 1993.
29. J. S. Beck et al, A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc., 1992. 114.
30. D. Zhao, J.Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, and G.D. Stucky, Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. . science, 1998. 279.
31. G. Sastre, C.R.A. Catlow and A. Corma, Influence of the Intermolecular Interactions on the Mobility of Heptane in the Supercages of MCM-22 Zeolite. A Molecular Dynamics Study. J. Phys. Chem. B, 2002. 106.
32. G.J. Kennedy and D.L. Dorset, Crystal Structure of MCM-70: A Microporous Material with High Framework Density. J. Phys. Chem. B, 2005. 109.
33. T. S. Jiang, Q.ZHao and H.B.Yin, Synthesis and characterization of Ni-mesoporous molecular sieves with high stability Inorganic Materials, 2007. 43.
34. A. Ghosh, R.P. Chitta, P. Mukherjee, M. Sastry and R. Kumar, Preparation and stabilization of gold nanoparticles formed by in situ reduction of aqueous chloroaurate ions within surface-modified mesoporous silica. Microporous and Mesoporous Materials, 2003. 58(3): p. 201-211.
35. D. Liu, J.H. Lei, L.P. Guo, X.D. Du and K. Zeng, Ordered thiol-functionalized mesoporous silica with macrostructure by true liquid crystal templating route. Microporous and Mesoporous Materials, 2009. 117(1-2): p. 67-74.
36. V. Zelenák et al, Amine-modified ordered mesoporous silica: Effect of pore size on carbon dioxide capture. Chemical Engineering Journal, 2008. 144(2): p. 336-342.
37. J. Fan, J. Lei, L.-M. Wang, C.-Z. Yu, B. Tu, D.-Y. Zhao, Rapid and high-capacity immobilization of enzymes based on mesoporous silicas with controlled morphologies. Electronic supplementary information (ESI) available: XRD and nitrogen sorption isotherms for MPSs used in bioimmobilization. ChemComm., 2003.
38. Z.-H. Dai, S.-Q. Liu, H.-X. Ju, H.-Y. Chen, Direct electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix. Biosens. Bioelectron., 2004. 19.
39. Y.J. Han, G.D. Stucky, A. Butler, Mesoporous silicate sequestration and release of proteins. J. Am. Chem. Soc., 1999. 121.
40. L. Washmon-Kriel, V.L. Jimenez, K.J. Balkus Jr., Cytochrome c immobilization into mesoporous molecular sieves. J. Mol. Catal. B: Enzym., 2000. 10.
41. 張美元, 盧敏彥, 廖怡萱, 黃俊傑, 高分子電解質膜燃料電池(PEMFC)陰極觸媒. 工業材料雜誌, 2004. 215期.
42. 張中良, 林月微, 徐雅亭, 質子交換膜技術. 工業材料雜誌, 2008. 259.
43. M. Gerard, A. Chaubey and B. D. Malhotra, Application of conducting polymers to biosensors Biosensors and Bioelectronics, 2002. 17.
44. W. H. Scoutena, J.H.T. Luongb and R.S. Brown, Enzyme or protein immobilization techniques for applications in biosensor design Trends in Biotechnology, 1995. 13.
45. 陳建中, 顧野松, 杜景順, 以導電性聚苯胺建構過氧化氫生物感測器之技術及其性質探討. 2009.
46. CL Morgan, D.N.a.C.P., Immunosensors: technology and opportunities in laboratory medicine. Clinical Chemistry, 1996. 42.
47. J.M. Pingarrón, P. Yáñez-Sedeño and A. González-Cortés, Gold nanoparticle-based electrochemical biosensors Analytical and Bioanalytical Chemistry, 2005. 382.
48. S. Liu,D. Leech and H. Ju, Application of Colloidal Gold in Protein Immobilization, Electron Transfer, and Biosensing Analytical Letters, 2003. 36(1).
49. 黃文星, 劉世鈞, 黃家宏, 黃俊凱, 鉑錯合物、其製造方法及應用. 台灣專利, 2009. 98146625.
50. J.H. Zhou et al., CTAB assisted microwave synthesis of ordered mesoporous carbon supported Pt nanoparticles for hydrogen electro-oxidation. Electrochimica Acta, 2007. 52(14): p. 4691-4695.
51. 黃家宏, 奈米氧化鐵觸媒應用於質子交換膜燃料電池. 國立台南大學材料所碩士論文, 2009.
52. M. Guisnet and P. Magnoux, Coking and deactivation of zeolites: Influence of the Pore Structure. Applied Catalysis, 1989. 54(1): p. 1-27.
53. C.Y. Chen, H.X. Li, and M.E. Davis, Studies on mesoporous materials: I. Synthesis and characterization of MCM-41. Microporous Materials, 1993. 2(1): p. 17-26.
54. Y. Shao et al , Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. Applied Catalysis B: Environmental, 2008. 79(1): p. 89-99.
55. Q. Wei et al., Catalytically active gold nanoparticles confined in periodic mesoporous organosilica (PMOs) by a modified external passivation route. Microporous and Mesoporous Materials, 2009. 117(1-2): p. 98-103.
56. T. Huang and W. Tu, Modification of functionalized mesoporous silica on the formation and the catalytic performance of platinum nanocatalysts. Applied Surface Science, 2009. 255(17): p. 7672-7678.
57. W. Yu et al., Immobilization of polymer-stabilized metal colloids by a modified coordination capture: preparation of supported metal colloids with singular catalytic properties. Journal of Molecular Catalysis A: Chemical, 1999. 142(2): p. 201-211.
58. A. Vinu, K.Z. Hossain and K. Ariga, Recent Advances in Functionalization of Mesoporous Silica. Journal of Nanoscience and Nanotechnology, 2005. 5.
59. J. S. Lettow et al, Hexagonal to Mesocellular Foam Phase Transition in Polymer-Templated Mesoporous Silicas. Langmuir, 2000. 16.
60. M. Kruk, M. Jaroniec, C.H. Ko and R. Ryoo, Characterization of the Porous Structure of SBA-15. Chemistry of materials, 2000. 12.
61. D. Zhao, P. Yang, B. F. Chmelka and G. D. Stucky, Multiphase Assembly of Mesoporous-Macroporous Membranes. Chemistry of materials, 1999. 11.
62. V. Zelenak, D. Halamova, L. Gaberova, E. Bloch and P. Llewellyn, Amine-Modified SBA-12 mesoporous silica for carbon dioxide capture : Effect of amine basicity on sorption properties. Microporous and Mesoporous Materials, 2008. 116.
63. J. A. Melero, G.D. Stucky, R. Grieken and G. Morales, Direct syntheses of ordered SBA-15 mesoporous materials containing arenesulfonic acid groups, J. Mater. Chem., 2002. 12.
64. H.J. Kim et al, One-pot synthesis of multifunctional mesoporous silica nanoparticle incorporated with zinc(II) phthalocyanine and iron oxide, Scripta Materialia, 2009. 61(12): p. 1137-1140.
65. S.U. Srisuda and B. Virote, One-Pot Synthesis of Organic–Inorganic Hybrid Mesoporous Materials for the Adsorption of Formaldehyde Vapor, Environmental Engineering Science, 2008. 25.
66. Q. Wei , Z.R. Nie, Y.L. Hao , L. Liu ,Z.X. Chen and J.X. Zou, Effect of synthesis conditions on the mesoscopical order of mesoporous silica SBA-15 functionalized by amino groups, J Sol-Gel Sci Techn, 2006. 39.
67. S.W. Song, K. Hidajat and S. Kawi, Functionalized SBA-15 Materials as Carriers for Controlled Drug Delivery: Influence of Surface Properties on Matrix-Drug Interactions, Langmuir, 2006. 21.
68. D.H. Lin, Y.X. Jiang, Y. Wang and S.G. Sun, Silver nanoparticles confined in SBA-15 mesoporous silica and the application as a sensor for detecting hydrogen peroxide, Journal of Nanomaterials 2008.
69. D. Coutinho, Z. Yang, J. P. Ferraris and K.J. Balkus Jr., Proton conducting polyaniline molecular sieve composites, Microporous and Mesoporous Materials, 2005. 81.
70. Y. Volokitin, J. Sinzig, L.J. de Jongh, G. Schmid, M.N. Vargaftik, I.I. Moiseevi, Quantum-size effects in the thermodynamic properties of metallic nanoparticles, Nature, 1996. 384(6610).
71. W.P. Halperin, Quantum size effects in metal particles, Reviews of Modern Physics, 1986. 58(3).
校內:2013-07-28公開