簡易檢索 / 詳目顯示

研究生: 胡毓棋
Hu, Yu-Chi
論文名稱: 藉由融膠凝膠製程出氧化鋅奈米粒子薄膜產生高效能反式有機太陽能元件
High efficiency inverted organic solar cells with ZnO nanoparticle films by Sol-gel process
指導教授: 周維揚
Chou, Wei-Yang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 86
中文關鍵詞: 反轉式有機太陽能元件光電轉換效率
外文關鍵詞: Inverted organic solar cells, Power conversion efficiency, molybdenum trioxide
相關次數: 點閱:96下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討以P3HT:ICBA以及PTB7:PCBM做為主動層材料之順 / 反轉式有機太陽能電池。反轉式有機太陽能電池之結構異於傳統型有機太陽能電池,在反轉式有機太陽能電池中,透明電極ITO扮演為陰極的腳色,而陽極的部份是用較高的功函數Al;而順式有機太陽能電池則相反。本研究是利用不同厚度的MoO_3當做電洞(順式) / 電子(反式)傳輸層,再搭配旋轉塗佈完主動層後製程方式的不同,製成元件以此比較光電轉換效率的優劣。
    在主動層為P3HT:ICBA時,反式元件的結構為ITO / ZnO / P3HT:ICBA / MoO_3 / Al;順式元件為ITO / MoO_3 / P3HT:ICBA / ZnO / Al。實驗A:先嘗試做在同MoO_3厚度的情況下(分5nm和10nm),藉由1.旋轉塗佈 ZnO+主動層後,一起熱退火;2.旋轉塗佈 ZnO後先熱退火,再旋轉塗佈主動層後再熱退火,比較1和2哪種方式效率較好。結果是情況1較好,因此做為製程條件。實驗B:在MoO_3厚度為10nm的情況下,ZnO對順反式元件的影響。實驗C:針對MoO_3厚度的變化讓順反式有機太陽能元件使其效率有所提升。實驗結果為:在反式元件中,MoO_3厚度為20nm其效率可達到4.23%;順式元件則是在MoO3厚度為5nm其效率為2.18%最好。
    在主動層為PTB7:PCBM時,反式元件的結構為ITO / ZnO / PTB7:PCBM / MoO_3 / Al;順式元件為ITO / MoO_3 / PTB7:PCBM / ZnO / Al,此實驗方式同上。實驗結果為:在反式元件中,MoO_3厚度為5nm其效率可到3.06%;順式元件則是在MoO_3厚度為20nm其效率可達到3.7%。實驗D:最後在不同的結構下的總比較。
    電性量測方面,本實驗於光照(illuminated)之環境下量測元件之電流電壓特性。光照情況下所得之電流電壓特性簡稱為亮電流電壓特性,從其中可取出串聯電阻、並聯電阻與各項光伏參數,包括短路電流密度、開路電壓、填充因子與光電轉換效率。1.利用吸收光譜儀可看出順反式元件在紫外光-可見光波段下的吸收強度,藉此可比較出ZnO對順/反式元件哪方比較有利。2.接著使用原子力顯微鏡(AFM)比較結構不同的順反式元件的表面形貌和粗糙程度,結果顯示因為ZnO奈米粒子是由正丁醇當作溶劑,可正丁醇對主動層會有侵蝕的效過使得表面粗糙程度加大,因此對MoO_3為10nm下,反式元件效率比起順式來的好。3.利用外部量子效率(EQE)來證明,順/反式元件在不同主動層下,哪種元件轉換效率來的最好。

    Zinc oxide (ZnO) is used to fabricate regular/inverted organic solar cells to compare differences in power conversion efficiency. To determine whether the power conversion efficiency is improved, an experimental design process is implemented to change the thickness of molybdenum trioxide (MoO3). The results of experiments (A), (B), and (C) are reported. In (A), an attempt is made to determine which experimental conditions are more favorable for the device. The experimental design used once or twice thermal annealing at the “active layer and ZnO.” In (B), when the thickness of MoO3 is fixed at 10 nm and different active layers are used, the power conversion efficiency of inverted organic solar cell is found to be better than that of a regular device. In (C), when an active layer is P3HT:ICBA, the power conversion efficiency of an inverted solar cell can reach 4.23% at 20 nm of MoO3. By contrast, a regular device has the best efficiency of 2.18% at a 5 nm of MoO3. When an active layer is PTB7:PCBM, the power conversion efficiency of an inverted solar cell can reach 3.06% when thickness of MoO3 is 5nm. Meanwhile, a regular device has the best efficiency of 3.7% at 20 nm thickness of MoO3.

    中文摘要 I 英文摘要 III 致謝 XIII 目錄 XIV 表目錄 XVII 圖目錄 XVIII 第一章緒論 1 1.1前言 1 1.2各式太陽能電池介紹 2 1.2.1早期晶圓類型的太陽能電池 2 1.2.2進階型薄膜型太陽能電池 3 1.2.3目前最新發展有機薄膜型太陽能電池 4 1.3實驗研究目的 5 第二章太陽能工作機制與原理 9 2.1有機太陽能電池的工作機制 9 2.1.1入射光被主動層材料吸收(Light absorption): 10 2.1.2激子擴散(exciton diffusion): 10 2.1.3電子-電洞對分離(exciton separation): 10 2.1.4電荷載子傳遞與收集(carrier transport & collection): 11 2.2有機太陽能元件的特性分析 13 2.2.1開路電壓(open circuit voltage,Voc): 14 2.2.2短路電流(short circuit current,JSC): 14 2.2.3入射光子對電子轉換率(incident photon to current efficiency,IPCE): 14 2.2.4填充因子(fill factor,FF): 15 2.2.5光電轉換效率(power conversion efficiency,η): 15 第三章實驗和分析儀器介紹 19 3.1實驗材料: 19 3.2 實驗製程儀器 20 3.2.1氧電漿(O2plasma): 20 3.2.2旋轉塗佈儀(spin-coato): 20 3.2.3物理氣相沉積儀(physical vapor deposition): 21 3.3 實驗分析儀器 22 3.3.1原子力顯微鏡(Atomic Force Microscopy): 22 3.3.2紫外光-可見光吸收光譜儀: 23 3.3.3電流-電壓之特性分析: 23 3.3.4外部量子效率(external quantum efficiency,ηEQE): 24 3.3.5 X-ray繞射圖譜: 24 3.3.6 拉曼光譜(Raman): 25 第四章實驗流程 32 4.1 玻璃基板的準備 32 4.2 實驗A:比較不同製程條件下的反式元件轉換效率 32 4.2.1 實驗製程方式: 32 4.3實驗B:比較不同的主動層下,順/反式元件轉換效率 33 4.3.1實驗B製程方式: 33 4.4實驗C:針對不同MoO3的厚度,比較順/反式元件效率的影響 34 4.4.1實驗C製程方式: 34 4.5實驗D:針對不同的結構下的總比較 35 4.5.1實驗流程: 35 第五章實驗量測及數據分析 44 5.1 前言 44 5.2 實驗A:”主動層+ ZnO ”進行一次或兩次熱退火 44 5.3實驗B:針對MoO3為10nm、不同主動層為條件下,順/反式太陽能元件的比較 44 5.3.1結論: 44 5.3.2 薄膜分析–原子力顯微鏡 45 5.3.3 紫外光-可見光吸收光譜儀 46 5.3.4 外部量子效率(EQE) 47 5.4實驗C:利用改變製程厚度,使轉換效率提升 47 5.4.1引言: 47 5.4.2結論: 48 5.4.3紫外光-可見光吸收光譜分析: 49 第六章結論與未來展望 82 6.1總結論 82 6.1.1結構不同下的總比較: 82 6.1.2針對MoO3厚度的變化,使順/反式元件效率有所提升: 83 6.2未來展望 83 參考文獻 84

    [ 1 ] C.W. Tang , Appl. Phys. Lett. 48 , 183 (1986)
    [ 2 ] P.Peummans , A. Yakimov , S.R. Forrest , J. Appl. Phys. 93 , 3693 (2003)
    [ 3 ] J.J.M. Halls , C.A. Walsh , N.C. Greenham ,E.A. Marseglia , R.H. Friend ,S.C. Moratti , and A.B. Holmes , Nature 376 , 498 (1995)
    [ 4 ]中華徵信所企業股份有限公司
    http://www.credit.com.tw/creditonline/Epaper/IndustrialSubjectContent.aspx?sn=152&unit=74
    [ 5 ] PVNET, Solar_roadmap_for_PV
    [ 6 ]S.-I. Sato,T.Ohishima,M.Imaizumi,"Modeling of degradtion behavior of InGaP/GaAs/Ge triple-juction space solar cell exposed to charged particles",J.Appl.Phys. 105,044504(2009)
    [ 7 ] http://www.siemens.com
    [ 8 ]Fei Chenga ,et.al. ,"Enhancing the performance of P3HT:ICBA based polymer solar cells using LiF as electron collecting buffer layer and UV–ozone treated MoO3 as hole collecting buffer layer",SOL ENERG MAT SOL C,Volume 110,Pages 63–68 (2013)
    [ 9 ] Y. Cao , G. Yu , I. D. Parker , A. J. Heeger , J. Appl. Phys. 2000 , 88 ,3618 .
    [ 10 ] P. E. Burrows , G. L. Graff , M. E. Gross , P. M. Martin , M. Hall ,E. Mast , C. Bonham , W. Bennet , L. Michalski , M. S. Weaver , . J. Brown , D. Fogarty , L. S. Sapochak , Proc. SPIE-Int. Soc. Opt. Eng.2000 , 4105 , 75 .
    [ 11 ] M. S. Weaver , L. A. Michalski , K. Rajan , M. A. Rothman ,J. A. Silverna,X.il , J. J. Brown , P. E. Burrows , G. L. Graff , M. E. Gross , P. M. Martin , M. Hall , E. Mast , C. Bohnam , W. Bennett , M. Zurnhoff ,
    Appl. Phys. Lett. 2002 , 81 , 2929 .
    [ 12 ] 工業術技研究院http://edm.itri.org.tw/enews/epaper/10009/e01.htm
    [ 13 ] Dipl.Ing.Klaus Petritsch , PHD Thesis , (2000)
    [ 14 ] J.Y. Kim and A.J. Bard , "Organic Donor/Acceptor Heterojunction Photovoltaic Devices based on Zinc Phthalocyanine and a Liquid Crystalline Perylene Diimide ", Chem. Phys. Lett. , vol. 383 , p.11 , 2004
    [ 15 ] S.R. Forrest , Mrs. Bull. 30 , 28 (2005)
    [ 16 ]S.K.M.Jo¨nssona,J.Birgersonb,X.Crispinb,G.Greczynskib,W.Osikowiczb,A.W.Denier van der Gonc,W.R.Salaneckb,M.Fahlmana,
    "The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic
    acid (PEDOT–PSS) films",Synthetic Metals vol.139 , p.1-10 , 2003
    [ 17 ]Fei Cheng,Guojia Fang,Xi Fan,Huihui Huang,Qiao Zheng,Pingli Qin,Hongwei Lei,Yongfang Li,"Enhancing the performance of P3HT:ICBA based polymer solar cells using LiF as electron collecting buffer layer and UV–ozone treated MoO3 as hole collecting buffer layer",Solar Energy Materials & Solar Cells, p.63-68 , 2013
    [ 18 ] Jens Niklas,Kristy L. Mardis,Brian P.Banks,Gregory M.Grooms,Andreas Sperlich,Vladimir Dyakonov,Serge Beaupre,Mario Leclerc,Tao Xu,Luping Yu,and Oleg G.Poluektov1,"Highly-E
    cient Charge Separation and Polaron Delocalization in Polymer-Fullerene
    Bulk-Heterojunctions: A Comparative Multi-Frequency EPR & DFT Study", Chem. Phys. 15 (24), 9562-9574 , 2013
    [ 19 ] R.H.Hansen et al.,"Effect of Atomic Oxygen on olymers",J.Polym. Sci.: A , 3 , 2205 , 1965
    [ 20 ] 力承儀器科技有限公司
    [ 21 ] C.Kittel , "Introduction to Solid State Physics" 7th edition , Wiley , New York , p.70 , 1996
    [ 22 ] Standard Test Methods for Electriacl Performance of Non-Concentrator Photovoltaic Cells Using Reference Cells,
    American Society for Testing and Materials Committee, 948
    [ 23 ] 行政院原子能委員會委託研究計畫研究報告
    [ 24 ] Chia-Shing Wu, Yun Chen"Copolyfluorenes Containing Bipolar Groups: Synthesis and Application to Enhance Electroluminescence of MEH-PPV"Macromolecules, 42(11), 3729-3737 (2009).
    [ 25 ] P.J.Bronw,D.S.Thomas,A.Kohler,J.S.Wilson,J.-S.Kim,C.M.Ramsdale and R.H.Friend,”Effect of interrchain interactions on the absorption and emission of P3HT “ Phys.Rev.B67,p.064203,2003

    下載圖示 校內:2019-08-31公開
    校外:2021-01-01公開
    QR CODE