簡易檢索 / 詳目顯示

研究生: 彭士維
Peng, Shr-Wei
論文名稱: 具剪力變形影響的雙層複合方板之振動分析
Vibration Analysis of Two-Layered Composite Mindlin Plate by Finite Element Method
指導教授: 王榮泰
Wang, Rong-Tyai
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 120
中文關鍵詞: 有限元素法複合方板
外文關鍵詞: Mindlin, Hamilton's principle
相關次數: 點閱:66下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文主要利用有限元素法分析雙層與部分雙層Mindlin板結構的自由振動特性;此結構分為上層和下層兩種不同的材料所組成。

      本文運用Mindlin板理論定義位移、應變與應力,計算出單層板的應變能及動能,再以漢米爾頓原力求得單層Mindlin板的靜態平衡方程式,使用靜態的運動方程式推導出其位移場之解並表示成形狀函數(shape function)的形式。由應變能及位能找出質量矩陣及剛性矩陣,進而利用Lagrange’s equation將應變能及動能代入得到單層方板元素的運動方程式,然後依不同的邊界條件將元素結合,解出系統的模態頻率,並討論厚度變化和分割元素數對板的自然頻率影響。進一步定義雙層Mindlin板的位移、應變,求出其質量矩陣及剛性矩陣和靜態運動方程式還有雙層Mindlin板的位移場通解,一樣利用Lagrange’s equation求得其模態頻率,並討論全部雙層Mindlin板和中間部分雙層Mindlin板的振動模態作個比較。

     This study presents natural frequencies of rectangular plate with single-layered、two-layered and partial two-layered in the central part by Finite Element Method.

     Based on Mindlin’s plate theory, the displacements, strains and stresses of single-layered rectangular plate can be defined to calculate strain energy and kinetic energy. The displacements solved from static equilibrium equations are used as shape functions of one element. Then, the Finite Element Method is employed to obtain the natural frequencies of the entire plate. The effects of thickness and element number on the natural frequencies of the plate are studied.

     Furthermore, the displacements of two-layered rectangular plate are defined. The natural frequencies of rectangular composite plate with two-layered or partial two-layered in the central also are studied by FEM.

    摘要 I 英文摘要 II 誌謝 III 表目錄 VI 圖目錄 VII 第一章 緒論  1 1-1 前言  1 1-2 文獻回顧  3 1-3 研究範圍 5 第二章 單層Mindlin板之運動方程式  7 2-1 單層Mindlin板之應變與應力  7 2-2 單層Mindlin板之應變能與動能   9 2-3 單層Mindlin板之平衡方程式與邊界條件  14 第三章 單層Mindlin板之振動分析  22 3-1 單層Mindlin板之位移場解  22 3-2 單層Mindlin板位移場解之矩陣形式及其Shape Function  25 3-3 單層Mindlin板元素的質量矩陣及剛性矩陣  28 3-4 有限元素法用於單層Mindlin板之準確性分析  31 第四章 雙層複合Mindlin板之運動方程式  40 4-1 雙層複合Mindlin板之應變與應力  44 4-2 雙層複合Mindlin板之應變能與動能  47 4-3 雙層複合Mindlin板之平衡方程式及邊界條件  52 4-4 問題與討論  53 第五章 雙層Mindlin板之振動分析  67 5-1 雙層Mindlin板之位移場解  67 5-2 雙層Mindlin板位移場解之矩陣形式及其Shape Function  71 5-3 雙層Mindlin板位移場解的質量矩陣及剛性矩陣  74 5-4 有限元素法用於雙層Mindlin板之準確性分析  76 5-5 四邊簡支撐(SSSS)雙層複合方板之振動分析  78 5-5 四邊簡支撐(SSSS)中央部分雙層複合方板之振動分析  80 第六章 總結與建議  92 6-1 結論  92 6-2 建議  93 參考文獻  94 附錄A  97 附錄B  99 附錄C  110

    1. E. Reissner, 1945, “The Effect of Transverse Shear Deformation on the Bending of Elastic Plates,” Journal of Applied Mechanics, Vol. 12, pp.A69-77

    2. R. D. Mindlin, 1951, “Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates,” Journal of Application Mechanics, Vol.18, pp. 31-38.

    3. E. Reissner and Y. Stavsky, 1961, “Bending and Stretching of Certain Types of Heterogeneous Aeolotropic Elastic Plates,” Journal of Application Mechanics, Vol.28, pp. 402-408.

    4. Y. Stavsky, 1961, “Bending and Stretching of Laminated Aeolotropic Plates,” ASCE Journal of Engineering Mechanics Division, Vol. 8, pp. 31-56.

    5. P. C. Yang, C. H. Norris and Y. Stavsky, 1966 , “Elastic Wave Propagation in Heterogeneous Plates,” International Journal of Solids and Structures, Vol. 2, pp. 665-684.

    6. J. M. Whitney and N. J. Pagano, 1970, “Shear Deformation in Heterogeneous Anisotropic Plates,” Journal of Applied Mechanics, Vol. 37, pp. 1031-1036.

    7. R. D. Mindlin, A. Schacknow and H. Deresiewicz, 1956, “Flexural Vibration of Rectangular Plates,” Journal of Applied Mechanics, Vol. 23, pp. 431-436.

    8. J. N. Reddy and N. D. Phan, 1985, “Stability and Vibration of Isotropic, Orthotropic and Laminated Plates According to a Higher-order Shear Deformation Theory,” Journal of Sound and Vibration, Vol. 98, pp. 157-170.

    9. N. D. Phan and J. N. Reddy, 1985, “Analysis of Laminated Composite Plates Using a Higher-Order Shear Deformation Theory,” Journal of Numerical Methods in Engineering, Vol. 21, pp. 2201-2219.

    10. A. A. Khdeir, 1988, “Free Vibration and Buckling of Symmetric Cross-Ply Laminated Plates by an Exact Method,” Journal of Sound and Vibration, Vol. 126, No. 3, pp. 447-461.

    11. N. S. Putcha and J. N. Reddy, 1986, “Stability and Natural Vibration Analysis of Laminated Plates by Using a Mixed Element Based on Refined Plate Theory,” Journal of Sound and Vibration, Vol. 104, pp. 285-300.

    12. A. K. Noor, 1973, “Free Vibrations of Multilayered Composite Plates,” AIAA Journal, Vol. 11, pp. 1038-1039.

    13. J. N. Reddy, 1997, Mechanics of Laminated Composite Plates .Theory and Analysis, CRC Press, Boca Raton, FL.

    14. L. X. Luccioni and S. B. Dong, 1998, “Levy-type Finite Element Analysis of Vibration and Stability of Thin and Thick Laminated Composite Rectangular Plates,” Composite Part B , Vol. 29, pp. 459-475.

    15. C. C. Chao and Y. C. Chern, 2000, “Comparison of Natural Frequencies of Laminated by 3-D Theory,” Journal of Sound and Vibration, Vol. 230, No. 5, pp. 985-1007.

    16. M. Aydogdu and T. Timarci, 2003, “Vibration Analysis of Cross-Ply Laminated Square Plates with General Boundary Condition,” Composites Science and Technology, Vol. 63, pp. 1061-1070.

    17. K. M. Liew, K. C. Hung and M. K. Lim, 1993, “Method of Domain Decomposition in Vibration of Mixed Edge Anisotropic Plates,” International Journal of Solids and Structures, Vol. 30, No. 23, pp. 3281-3301.

    18. T. P. Chang and M. H. Wu, 1997, “On the Use of Characteristics Orthogonal Polynomials in the Free Vibration Analysis of Rectangular Anisotropic Plates with Mixed Boundary and Concentrated Masses,” Computers and Structure, Vol.62, No. 4, pp. 699-713.

    19. K. M. Liew, K. C. Hung and M. K. Lim, 1993, “Method of Domain Decomposition in Vibration of Mixed Edge Anisotropic Plates,” International Journal of Solids and Structures, Vol. 30, No. 23, pp. 3281-3301.

    20. D. J. Dawe and D. Tan, 1999, “Finite Strip Buckling and Free Vibration Analysis of Stepped Rectangular Composite Laminated Plates,” International Journal for Numerical Methods in Engineering, Vol. 46, pp. 1313-1334.

    下載圖示 校內:立即公開
    校外:2005-08-26公開
    QR CODE