| 研究生: |
謝怡宣 Hsieh, Yi-Hsuan |
|---|---|
| 論文名稱: |
殼層以及核層交聯聚電解質複合粒子應用於藥物載體 Shell- and core- cross-linked polyelectrolyte complex particles as drug carriers |
| 指導教授: |
詹正雄
JAN, JENG-SHIUNG |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 聚電解質 、礦化複合粒子 、交聯 |
| 外文關鍵詞: | polyelectrolyte, complex particles, silica, hybrid particles, cross-link |
| 相關次數: | 點閱:109 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
帶正電聚電解質與帶負電聚電解質因靜電作用力互相吸引,形成多種不同型態之複合產物,如:複合粒子、膜層、膠體,及不規則析出… …等,而複合產物之物性與化性大多與組成聚電解質有關,透過巧妙的設計,就能使複合產物保有原組成聚電解質之酸鹼應答或特殊構形等功能。
本研究中,帶正電之聚賴胺酸(PLL)與帶負電之聚丙烯酸(PAA)透過靜電作用,於水溶液中自組裝形成奈米複合粒子,藉由控制鹽類濃度、PLL和PAA鏈長、PLL與PAA相對比例… …等參數,以改變所形成奈米粒子之粒徑大小與界面電位,並經由二氧化矽礦化作用、殼層交聯反應以達到穩固複合粒子的目的;首先,吾人利用仿生合成,以複合奈米粒子為模板沉析二氧化矽,形成有機/無機核心交聯粒子,此礦化粒子會因聚電解質官能基的不同而顯示出不同的等電點;本研究亦藉由交聯劑與複合粒子表面之過量聚電解質反應,生成殼層交聯粒子。
以電解質複合粒子所製備出之核心/殼層交聯複合粒子,能在稀釋條件及不同酸鹼值下保持穩定,在酸鹼應答型藥物載體的應用上極具潛力,亦在觸媒、仿生性包覆體,及功能性奈米反應器… … 等生物材料上,有極高的應用價值。
Complexes of two oppositely charged polyelectrolytes could lead to a variety of outcomes, for instance: precipitation, membranes, gels, and particles. The resulting complexes exhibited the structure and property of the constituent polyelectrolytes such as thermal or pH responsiveness and ordered conformation.
In this study, polyelectrolyte complex (PEC) particles were obtained by electrostatic interactions between positively charged poly(L-lysine) (PLL) and negatively charged poly(acrylic acid) (PAA) in aqueous medium. The influence of chain length, weight ratio of PLL and PAA, and solution condition on the formation of the PEC particles was studied and characterized by DLS, Zeta potential, and TEM. Silica mineralization and shell cross-linking were applied to stabilize the PEC particles in extreme solution conditions or dilution.
PEC-silica hybrid particles could be prepared by mineralizing silica in the complex cores, resulting in core-cross-linked particles. The hybrid particles exhibited different iso-electric points that depended on the constituent polyelectrolyte. The shell cross-linked micelles (SCMs) could be prepared by cross-linking the excess polyelectrolyte on the corona. The shell- and core-cross-linked PEC particles were stable at different pH values. The feasibility of using the cross-linked PEC particles as pH-sensitive drug carriers was evaluated in this study. With the unique feature of the biocompatible PEC-silica hybrid particles and SCMs, they could be developed as drug carriers, biomimetic encapsulants, functional nanobioreactiotors, and so forth.
1. Lavasanifar, A.; Samuel, J.; Kwon, G. S., Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery. Advanced Drug Delivery Reviews 54(2), 169-190 (2002).
2. Bae, Y.; Kataoka, K., Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Advanced Drug Delivery Reviews 61(10), 768-784 (2009).
3. Carlsen, A.; Lecommandoux, S., Self-assembly of polypeptide-based block copolymer amphiphiles. Current Opinion in Colloid & Interface Science 14(5), 329-339 (2009).
4. Xia, F.; Feng, L.; Wang, S.; Sun, T.; Song, W.; Jiang, W.; Jiang, L., Dual‐Responsive Surfaces That Switch between Superhydrophilicity and Superhydrophobicity. Advanced Materials 18(4), 432-436 (2006).
5. Xia, F.; Ge, H.; Hou, Y.; Sun, T.; Chen, L.; Zhang, G.; Jiang, L., Multiresponsive surfaces change between superhydrophilicity and superhydrophobicity. Advanced Materials 19(18), 2520-2524 (2007).
6. Miyashiro, T.; Goulian, M., High stimulus unmasks positive feedback in an autoregulated bacterial signaling circuit. Proceedings of the National Academy of Sciences 105(45), 17457-17462 (2008).
7. Guo, Y.; Xia, F.; Xu, L.; Li, J.; Yang, W.; Jiang, L., Switchable wettability on cooperative dual-responsive poly-L-lysine surface. Langmuir 26(2), 1024-1028 (2009).
8. Deming, T. J., Synthetic polypeptides for biomedical applications. Progress in Polymer Science 32(8-9), 858-875 (2007).
9. Thunemann, A. F.; Muller, M.; Dautzenberg, H.; Joanny, J. F. O.; Lowen, H., Polyelectrolyte complexes. In Polyelectrolytes with Defined Molecular Architecture Ii, Schmidt, M., Ed. 2004; Vol. 166, pp 113-171.
10. Thünemann, A. F.; Müller, M.; Dautzenberg, H.; Joanny, J.-F.; Löwen, H., Polyelectrolyte complexes. In Polyelectrolytes with defined molecular architecture II, Springer: 2004; pp 113-171.
11. de la Torre, P. M.; Torrado, S.; Torrado, S., Interpolymer complexes of poly(acrylic acid) and chitosan: influence of the ionic hydrogel-forming medium. Biomaterials 24(8), 1459-1468 (2003).
12. Sun, H.; Li, W.; Wu, L. X., Honeycomb-Patterned Films Fabricated by Self-Organization of DNA-Surfactant Complexes. Langmuir 25(18), 10466-10472 (2009).
13. Kabanov, V. A.; Zezin, A. B.; Rogacheva, V. B.; Ryzhikov, S. V., Disproportionation of nonstoichiometric poly-electrolyte complexes in water-salt solutions. Dokl. Akad. Nauk SSSR 267(4), 862-865 (1982).
14. Bakeev, K. N.; Izumrudov, V. A.; Kuchanov, S. I.; Zezin, A. B.; Kabanov, V. A., Kinetics and mechanism of the macromolecular exchange in a interpolyelectrolytic complex. Dokl. Akad. Nauk SSSR 300(1), 132-135 (1988).
15. Harada, A.; Kataoka, K., Novel polyion complex micelles entrapping enzyme molecules in the core. 2. Characterization of the micelles prepared at nonstoichiometric mixing ratios. Langmuir 15(12), 4208-4212 (1999).
16. Kawamura, A.; Harada, A.; Kono, K.; Kataoka, K., Self-assembled nano-bioreactor from block ionomers with elevated and stabilized enzymatic function. Bioconjug. Chem. 18(5), 1555-1559 (2007).
17. Martin, G. R.; Jain, R. K., Noninvasive measurement of interstitial ph profiles in normal and neoplastic tissue using fluorescence ratio imaging microscopy. Cancer Res. 54(21), 5670-5674 (1994).
18. Zhang, G. D.; Nishiyama, N.; Harada, A.; Jiang, D. L.; Aida, T.; Kataoka, K., PH-sensitive assembly of light-harvesting dendrimer zinc porphyrin bearing peripheral groups of primary amine with poly(ethylene glycol)-b-poly(aspartic acid) in aqueous solution. Macromolecules 36(4), 1304-1309 (2003).
19. Fukushima, S.; Miyata, K.; Nishiyama, N.; Kanayama, N.; Yamasaki, Y.; Kataoka, K., PEGylated polyplex micelles from triblock catiomers with spatially ordered layering of condensed pDNA and buffering units for enhanced intracellular gene delivery. J. Am. Chem. Soc. 127(9), 2810-2811 (2005).
20. Bae, Y.; Fukushima, S.; Harada, A.; Kataoka, K., Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change. Angewandte Chemie-International Edition 42(38), 4640-4643 (2003).
21. Jeong, J. H.; Kim, S. W.; Park, T. G., Novel intracellular delivery system of antisense oligonucleotide by self-assembled hybrid micelles composed of DNA/PEG conjugate and cationic fusogenic peptide. Bioconjug. Chem. 14(2), 473-479 (2003).
22. Lee, Y.; Fukushima, S.; Bae, Y.; Hiki, S.; Ishii, T.; Kataoka, K., A protein nanocarrier from charge-conversion polymer in response to endosomal pH. J. Am. Chem. Soc. 129(17), 5362-+ (2007).
23. Falini, G.; Albeck, S.; Weiner, S.; Addadi, L., Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271(5245), 67-69 (1996).
24. Bae, Y.; Fukushima, S.; Harada, A.; Kataoka, K., Design of environment‐sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change. Angewandte Chemie International Edition 42(38), 4640-4643 (2003).
25. Russo, A.; Degraff, W.; Friedman, N.; Mitchell, J. B., Selective modulation of glutathione levels in human normal versus tumor-cells and subsequent differential response to chemotherapy drugs. Cancer Res. 46(6), 2845-2848 (1986).
26. Lee, Y.; Mo, H.; Koo, H.; Park, J.-Y.; Cho, M. Y.; Jin, G.-w.; Park, J.-S., Visualization of the degradation of a disulfide polymer, linear poly(ethylenimine sulfide), for gene delivery. Bioconjug. Chem. 18(1), 13-18 (2007).
27. Takae, S.; Miyata, K.; Oba, M.; Ishii, T.; Nishiyama, N.; Itaka, K.; Yamasaki, Y.; Koyama, H.; Kataoka, K., PEG-detachable polyplex micelles based on disulfide-linked block catiomers as bioresponsive nonviral gene vectors. J. Am. Chem. Soc. 130(18), 6001-6009 (2008).
28. Kakizawa, Y.; Harada, A.; Kataoka, K., Glutathione-sensitive stabilization of block copolymer micelles composed of antisense DNA and thiolated poly(ethylene glycol)-block-poly(L-lysine): A potential carrier for systemic delivery of antisense DNA. Biomacromolecules 2(2), 491-497 (2001).
29. Kakizawa, Y.; Harada, A.; Kataoka, K., Environment-sensitive stabilization of core-shell structured polyion complex micelle by reversible cross-linking of the core through disulfide bond. J. Am. Chem. Soc. 121(48), 11247-11248 (1999).
30. Matsumoto, S.; Christie, R. J.; Nishiyama, N.; Miyata, K.; Ishii, A.; Oba, M.; Koyama, H.; Yamasaki, Y.; Kataoka, K., Environment-Responsive Block Copolymer Micelles with a Disulfide Cross-Linked Core for Enhanced siRNA Delivery. Biomacromolecules 10(1), 119-127 (2009).
31. Lee, Y.; Mo, H.; Koo, H.; Park, J.-Y.; Cho, M. Y.; Jin, G.-w.; Park, J.-S., Visualization of the degradation of a disulfide polymer, linear poly (ethylenimine sulfide), for gene delivery. Bioconjug. Chem. 18(1), 13-18 (2007).
32. Issels, R. D., Hyperthermia adds to chemotherapy. Eur. J. Cancer 44(17), 2546-2554 (2008).
33. Sershen, S. R.; Westcott, S. L.; Halas, N. J.; West, J. L., Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. J. Biomed. Mater. Res. 51(3), 293-298 (2000).
34. Annaka, M.; Morishita, K.; Okabe, S., Electrostatic self-assembly of neutral and polyelectrolyte block copolymers and oppositely charged surfactant. Journal of Physical Chemistry B 111(40), 11700-11707 (2007).
35. Park, J.-S.; Akiyama, Y.; Yamasaki, Y.; Kataoka, K., Preparation and characterization of polyion complex micelles with a novel thermosensitive poly(2-isopropyl-2-oxazoline) shell via the complexation of oppositely charged block ionomers. Langmuir 23(1), 138-146 (2007).
36. Park, J.-S.; Akiyama, Y.; Yamasaki, Y.; Kataoka, K., Preparation and characterization of polyion complex micelles with a novel thermosensitive poly (2-isopropyl-2-oxazoline) shell via the complexation of oppositely charged block ionomers. Langmuir 23(1), 138-146 (2007).
37. Klaus, T.; Joerger, R.; Olsson, E.; Granqvist, C.-G., Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences 96(24), 13611-13614 (1999).
38. Hincke, M. T.; Gautron, J.; Tsang, C. P. W.; McKee, M. D.; Nys, Y., Molecular cloning and ultrastructural localization of the core protein of an eggshell matrix proteoglycan, ovocleidin-116. J. Biol. Chem. 274(46), 32915-32923 (1999).
39. Mann, K.; Siedler, F., The amino acid sequence of ovocleidin 17, a major protein of the avian eggshell calcified layer. Biochem. Mol. Biol. Int. 47(6), 997-1007 (1999).
40. Gautron, J.; Hincke, M. T.; Mann, K.; Panheleux, M.; Bain, M.; McKee, M. D.; Solomon, S. E.; Nys, Y., Ovocalyxin-32, a novel chicken eggshell matrix protein - Isolation, amino acid sequencing, cloning, and immunocytochemical localization. J. Biol. Chem. 276(42), 39243-39252 (2001).
41. Lakshminarayanan, R.; Kini, R. M.; Valiyaveettil, S., Investigation of the role of ansocalcin in the biomineralization in goose eggshell matrix. Proc. Natl. Acad. Sci. U. S. A. 99(8), 5155-5159 (2002).
42. Lowenstam, H. A., Spicular morphology and mineralogy in some pyuridae (ascidiacea). Bulletin of Marine Science 45(2), 243-252 (1989).
43. Weiner, S.; Wagner, H. D., The material bone: Structure mechanical function relations. Annual Review of Materials Science 28, 271-298 (1998).
44. George, A.; Bannon, L.; Sabsay, B.; Dillon, J. W.; Malone, J.; Veis, A.; Jenkins, N. A.; Gilbert, D. J.; Copeland, N. G., The carboxyl-terminal domain of phosphophoryn contains unique extended triplet amino acid repeat sequences forming ordered carboxyl-phosphate interaction ridges that may be essential in the biomineralization process. J. Biol. Chem. 271(51), 32869-32873 (1996).
45. Sarikaya, M., Biomimetics: materials fabrication through biology. Proceedings of the National Academy of Sciences 96(25), 14183-14185 (1999).
46. Lowenstam, H. A., Goethite in radular teeth of recent marine gastropods. Science 137(3526), 279-& (1962).
47. Lowensta.Ha, Lepidocrocite an apatite mineral and magnetite in teeth of chitons (polyplacophora). Science 156(3780), 1373-& (1967).
48. Sumerel, J. L.; Yang, W. J.; Kisailus, D.; Weaver, J. C.; Choi, J. H.; Morse, D. E., Biocatalytically templated synthesis of titanium dioxide. Chemistry of Materials 15(25), 4804-4809 (2003).
49. Dameron, C. T.; Reese, R. N.; Mehra, R. K.; Kortan, A. R.; Carroll, P. J.; Steigerwald, M. L.; Brus, L. E.; Winge, D. R., Biosynthesis of cadmium-sulfide quantum semiconductor crystallites. Nature 338(6216), 596-597 (1989).
50. Lichtenegger, H. C.; Schoberl, T.; Bartl, M. H.; Waite, H.; Stucky, G. D., High abrasion resistance with sparse mineralization: Copper biomineral in worm jaws. Science 298(5592), 389-392 (2002).
51. Klaus, T.; Joerger, R.; Olsson, E.; Granqvist, C. G., Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. U. S. A. 96(24), 13611-13614 (1999).
52. Blakemore, R., Magnetotactic bacteria. Science 190(4212), 377-379 (1975).
53. Schulz, A.; Wang, H.; van Rijn, P.; Böker, A., Synthetic inorganic materials by mimicking biomineralization processes using native and non-native protein functions. Journal of Materials Chemistry 21(47), 18903-18918 (2011).
54. Kroeger, N.; Deutzmann, R.; Sumper, M., Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science (Washington D C) 286(5442), 1129-1132 (1999).
55. Kroger, N.; Deutzmann, R.; Sumper, M., Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286(5442), 1129-1132 (1999).
56. Kroeger, N.; Deutzmann, R.; Bergsdorf, C.; Sumper, M., Species-specific polyamines from diatoms control silica morphology. Proc. Natl. Acad. Sci. U. S. A. 97(26), 14133-14138 (2000).
57. Kroger, N.; Lorenz, S.; Brunner, E.; Sumper, M., Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 298(5593), 584-586 (2002).
58. Cha, J. N.; Shimizu, K.; Zhou, Y.; Christiansen, S. C.; Chmelka, B. F.; Stucky, G. D.; Morse, D. E., Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc. Natl. Acad. Sci. U. S. A. 96(2), 361-365 (1999).
59. Tomczak, M. M.; Glawe, D. D.; Drummy, L. F.; Lawrence, C. G.; Stone, M. O.; Perry, C. C.; Pochan, D. J.; Deming, T. J.; Naik, R. R., Polypeptide-templated synthesis of hexagonal silica platelets. J. Am. Chem. Soc. 127(36), 12577-12582 (2005).
60. Patwardhan, S. V.; Maheshwari, R.; Mukherjee, N.; Kiick, K. L.; Clarson, S. J., Conformation and assembly of polypeptide scaffolds in templating the synthesis of silica: An example of a polylysine macromolecular "switch". Biomacromolecules 7(2), 491-497 (2006).
61. Cha, J. N.; Bartl, M. H.; Wong, M. S.; Popitsch, A.; Deming, T. J.; Stucky, G. D., Microcavity lasing from block peptide hierarchically assembled quantum dot spherical resonators. Nano Letters 3(7), 907-911 (2003).
62. Wong, M. S.; Cha, J. N.; Choi, K. S.; Deming, T. J.; Stucky, G. D., Assembly of nanoparticles into hollow spheres using block copolypeptides. Nano Letters 2(6), 583-587 (2002).
63. Murthy, V. S.; Cha, J. N.; Stucky, G. D.; Wong, M. S., Charge-driven flocculation of poly(L-lysine)-gold nanoparticle assemblies leading to hollow microspheres. J. Am. Chem. Soc. 126(16), 5292-5299 (2004).
64. van Bommel, K. J. C.; Jung, J. H.; Shinkai, S., Poly(L-lysine) aggregates as templates for the formation of hollow silica spheres. Advanced Materials 13(19), 1472-+ (2001).
65. Rana, R. K.; Murthy, V. S.; Yu, J.; Wong, M. S., Nanoparticle self-assembly of hierarchically ordered microcapsule structures. Advanced Materials 17(9), 1145-+ (2005).
66. Shim, M. S.; Kwon, Y. J., Acid-transforming polypeptide micelles for targeted nonviral gene delivery. Biomaterials 31(12), 3404-3413 (2010).
67. Huang, C.-q.; Hong, C.-y.; Pan, C.-y., Formation of flower-like aggregates from self-assembling of micelles with PEO shells and cross-linked polyacrylamide cores. Chinese Journal of Polymer Science 26(3), 341-352 (2008).
68. Zhang, J.; Jiang, X.; Zhang, Y.; Li, Y.; Liu, S., Facile fabrication of reversible core cross-linked micelles possessing thermosensitive swellability. Macromolecules 40(25), 9125-9132 (2007).
69. Duong, H. T. T.; Nguyen, T. L. U.; Stenzel, M. H., Micelles with surface conjugated RGD peptide and crosslinked polyurea core via RAFT polymerization. Polymer Chemistry 1(2), 171-182 (2010).
70. Withey, A. B. J.; Chen, G.; Nguyen, T. L. U.; Stenzel, M. H., Macromolecular Cobalt Carbonyl Complexes Encapsulated in a Click-Cross-Linked Micelle Structure as a Nanoparticle To Deliver Cobalt Pharmaceuticals. Biomacromolecules 10(12), 3215-3226 (2009).
71. Kim, J. S.; Youk, J. H., Preparation of core cross-linked micelles using a photo-cross-linking agent. Polymer 50(10), 2204-2208 (2009).
72. Bontha, S.; Kabanov, A. V.; Bronich, T. K., Polymer micelles with cross-linked ionic cores for delivery of anticancer drugs. J. Control. Release 114(2), 163-174 (2006).
73. Kim, J. O.; Nukolova, N. V.; Oberoi, H. S.; Kabanov, A. V.; Bronich, T. K., Block ionomer complex micelles with cross-linked cores for drug delivery. Polymer Science Series A 51(6), 708-718 (2009).
74. Kim, J. O.; Kabanov, A. V.; Bronich, T. K., Polymer micelles with cross-linked polyanion core for delivery of a cationic drug doxorubicin. J. Control. Release 138(3), 197-204 (2009).
75. Kim, J. O.; Sahay, G.; Kabanov, A. V.; Bronich, T. K., Polymeric Micelles with Ionic Cores Containing Biodegradable Cross-Links for Delivery of Chemotherapeutic Agents. Biomacromolecules 11(4), 919-926 (2010).
76. O'Reilly, R. K.; Hawker, C. J.; Wooley, K. L., Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chemical Society Reviews 35(11), 1068-1083 (2006).
77. Koo, A. N.; Lee, H. J.; Kim, S. E.; Chang, J. H.; Park, C.; Kim, C.; Park, J. H.; Lee, S. C., Disulfide-cross-linked PEG-poly(amino acid)s copolymer micelles for glutathione-mediated intracellular drug delivery. Chemical Communications (48), 6570-6572 (2008).
78. Jiang, G., Preparation of Liquid-Filled Micelles Based on an Amphiphilic Triblock Copolymer. Journal of Applied Polymer Science 114(6), 3472-3478 (2009).
79. Zhou, Y.; Jiang, K.; Chen, Y.; Liu, S., Gold nanoparticle-incorporated core and shell crosslinked micelles fabricated from thermoresponsive block copolymer of N-isopropylacrylamide and a novel primary-amine containing monomer. Journal of Polymer Science Part a-Polymer Chemistry 46(19), 6518-6531 (2008).
80. He, L.; Read, E. S.; Armes, S. P.; Adams, D. J., Direct synthesis of controlled-structure primary amine-based methacrylic polymers by living radical polymerization. Macromolecules 40(13), 4429-4438 (2007).
81. Xu, X.; Smith, A. E.; McCormick, C. L., Facile 'One-Pot' Preparation of Reversible, Disulfide-Containing Shell Cross-Linked Micelles from a RAFT-Synthesized, pH-Responsive Triblock Copolymer in Water at Room Temperature. Australian Journal of Chemistry 62(11), 1520-1527 (2009).
82. Li, Y. T.; Lokitz, B. S.; Armes, S. P.; McCormick, C. L., Synthesis of reversible shell cross-linked micelles for controlled release of bioactive agents. Macromolecules 39(8), 2726-2728 (2006).
83. Kim, J. S.; Youk, J. H., Encapsulation of nanomaterials within intermediary layer cross-linked micelles using a photo-cross-linking agent. Macromolecular Research 17(11), 926-930 (2009).
84. Pilon, L. N.; Armes, S. P.; Findlay, P.; Rannard, S. P., Synthesis and characterisation of new shell cross-linked micelles with amine-functional coronas. European polymer journal 42(7), 1487-1498 (2006).
85. Sun, G.; Hagooly, A.; Xu, J.; Nyström, A. M.; Li, Z.; Rossin, R.; Moore, D. A.; Wooley, K. L.; Welch, M. J., Facile, efficient approach to accomplish tunable chemistries and variable biodistributions for shell cross-linked nanoparticles. Biomacromolecules 9(7), 1997-2006 (2008).
86. Hao, J.; Kwissa, M.; Pulendran, B.; Murthy, N., Peptide crosslinked micelles: a new strategy for the design and synthesis of peptide vaccines. International journal of nanomedicine 1(1), 97 (2006).
87. Yang, T.-F.; Chen, C.-N.; Chen, M.-C.; Lai, C.-H.; Liang, H.-F.; Sung, H.-W., Shell-crosslinked Pluronic L121 micelles as a drug delivery vehicle. Biomaterials 28(4), 725-734 (2007).
88. Iijima, M.; Nagasaki, Y.; Okada, T.; Kato, M.; Kataoka, K., Core-polymerized reactive micelles from heterotelechelic amphiphilic block copolymers. Macromolecules 32(4), 1140-1146 (1999).
89. Lee, W.-C.; Li, Y.-C.; Chu, I. M., Amphiphilic poly(D,L-lactic acid)/poly(ethylene glycol)/poly(D,L-lactic acid) nanogels for controlled release of hydrophobic drugs. Macromol. Biosci. 6(10), 846-854 (2006).
90. Jamroz-Piegza, M.; Walach, W.; Dworak, A.; Trzebicka, B., Polyether nanoparticles from covalently crosslinked copolymer micelles. J. Colloid Interface Sci. 325(1), 141-148 (2008).
91. Yusa, S.-i.; Sugahara, M.; Endo, T.; Morishima, Y., Preparation and Characterization of a pH-Responsive Nanogel Based on a Photo-Cross-Linked Micelle Formed From Block Copolymers with Controlled Structure. Langmuir 25(9), 5258-5265 (2009).
92. Shi, D.; Matsusaki, M.; Akashi, M., Photo-Cross-Linking Induces Size Change and Stealth Properties of Water-Dispersible Cinnamic Acid Derivative Nanoparticles. Bioconjug. Chem. 20(10), 1917-1923 (2009).
93. Saito, K.; Ingalls, L. R.; Lee, J.; Warner, J. C., Core-bound polymeric micellar system based on photocrosslinking of thymine. Chemical Communications (24), 2503-2505 (2007).
94. Matsumoto, K.; Hasegawa, H.; Matsuoka, H., Synthesis of sodium-polystyrenesulfonate-grafted nanoparticles by core-cross-linking of block copolymer micelles. Tetrahedron 60(34), 7197-7204 (2004).
95. Du, J. Z.; Chen, Y. M., Hairy nanospheres by gelation of reactive block copolymer micelles. Macromolecular Rapid Communications 26(6), 491-494 (2005).
96. Yang, Z.; Zheng, S.; Harrison, W. J.; Harder, J.; Wen, X.; Gelovani, J. G.; Qiao, A.; Li, C., Long-circulating near-infrared fluorescence core-cross-linked polymeric micelles: Synthesis, characterization, and dual nuclear/optical imaging. Biomacromolecules 8(11), 3422-3428 (2007).
97. Matsumoto, K.; Kage, S.; Matsuoka, H., Synthesis of water-dispersible, fluorinated particles with grafting sulfonate chains by the core crosslinking of block copolymer micelles. Journal of Polymer Science Part a-Polymer Chemistry 45(7), 1316-1323 (2007).
98. Langmaier, F.; Mládek, M.; Mokrejš, P., Hydrogels of collagen hydrolysate cross-linked with dialdehyde starch. Journal of thermal analysis and calorimetry 98(3), 807-812 (2009).
99. Nishi, C.; Nakajima, N.; Ikada, Y., In-vitro evaluation of cytotoxicity of diepoxy compounds used for biomaterial modification. J. Biomed. Mater. Res. 29(7), 829-834 (1995).
100. Schoen, F. J.; Harasaki, H.; Kim, K. M.; Anderson, H. C.; Levy, R. J., Biomaterial-associated calcification - pathology, mechanisms, and strategies for prevention. Journal of Biomedical Materials Research-Applied Biomaterials 22(A1), 11-36 (1988).
101. Nickerson, M. T.; Farnworth, R.; Wagar, E.; Hodge, S. M.; Rousseau, D.; Paulson, A. T., Some physical and microstructural properties of genipin-crosslinked gelatin-maltodextrin hydrogels. Int. J. Biol. Macromol. 38(1), 40-44 (2006).
102. Jan, J.-S.; Chen, P.-S.; Hsieh, P.-L.; Chen, B.-Y., Silicification of Genipin-Cross-Linked Polypeptide Hydrogels Toward Biohybrid Materials and Mesoporous Oxides. ACS applied materials & interfaces 4(12), 6865-6874 (2012).
103. Petruczok, C. D.; Barlow, R. F.; Shipp, D. A., Synthesis of poly (tert‐butyl acrylate‐block‐vinyl acetate) copolymers by combining ATRP and RAFT polymerizations. Journal of Polymer Science Part A: Polymer Chemistry 46(21), 7200-7206 (2008).
104. Voets, I. K.; de Keizer, A.; Cohen Stuart, M. A., Complex coacervate core micelles. Adv. Colloid Interface Sci. 147, 300-318 (2009).
105. Shinoda, K.; Hayashi, T.; Yoshida, T.; Sakai, K.; Nakajima, A., Complex formation of poly-L-lysine with poly (acrylic acid). Polymer Journal 8(2), 202-207 (1976).