簡易檢索 / 詳目顯示

研究生: 謝怡宣
Hsieh, Yi-Hsuan
論文名稱: 殼層以及核層交聯聚電解質複合粒子應用於藥物載體
Shell- and core- cross-linked polyelectrolyte complex particles as drug carriers
指導教授: 詹正雄
JAN, JENG-SHIUNG
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 100
中文關鍵詞: 聚電解質礦化複合粒子交聯
外文關鍵詞: polyelectrolyte, complex particles, silica, hybrid particles, cross-link
相關次數: 點閱:109下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 帶正電聚電解質與帶負電聚電解質因靜電作用力互相吸引,形成多種不同型態之複合產物,如:複合粒子、膜層、膠體,及不規則析出… …等,而複合產物之物性與化性大多與組成聚電解質有關,透過巧妙的設計,就能使複合產物保有原組成聚電解質之酸鹼應答或特殊構形等功能。
    本研究中,帶正電之聚賴胺酸(PLL)與帶負電之聚丙烯酸(PAA)透過靜電作用,於水溶液中自組裝形成奈米複合粒子,藉由控制鹽類濃度、PLL和PAA鏈長、PLL與PAA相對比例… …等參數,以改變所形成奈米粒子之粒徑大小與界面電位,並經由二氧化矽礦化作用、殼層交聯反應以達到穩固複合粒子的目的;首先,吾人利用仿生合成,以複合奈米粒子為模板沉析二氧化矽,形成有機/無機核心交聯粒子,此礦化粒子會因聚電解質官能基的不同而顯示出不同的等電點;本研究亦藉由交聯劑與複合粒子表面之過量聚電解質反應,生成殼層交聯粒子。
    以電解質複合粒子所製備出之核心/殼層交聯複合粒子,能在稀釋條件及不同酸鹼值下保持穩定,在酸鹼應答型藥物載體的應用上極具潛力,亦在觸媒、仿生性包覆體,及功能性奈米反應器… … 等生物材料上,有極高的應用價值。

    Complexes of two oppositely charged polyelectrolytes could lead to a variety of outcomes, for instance: precipitation, membranes, gels, and particles. The resulting complexes exhibited the structure and property of the constituent polyelectrolytes such as thermal or pH responsiveness and ordered conformation.
    In this study, polyelectrolyte complex (PEC) particles were obtained by electrostatic interactions between positively charged poly(L-lysine) (PLL) and negatively charged poly(acrylic acid) (PAA) in aqueous medium. The influence of chain length, weight ratio of PLL and PAA, and solution condition on the formation of the PEC particles was studied and characterized by DLS, Zeta potential, and TEM. Silica mineralization and shell cross-linking were applied to stabilize the PEC particles in extreme solution conditions or dilution.
    PEC-silica hybrid particles could be prepared by mineralizing silica in the complex cores, resulting in core-cross-linked particles. The hybrid particles exhibited different iso-electric points that depended on the constituent polyelectrolyte. The shell cross-linked micelles (SCMs) could be prepared by cross-linking the excess polyelectrolyte on the corona. The shell- and core-cross-linked PEC particles were stable at different pH values. The feasibility of using the cross-linked PEC particles as pH-sensitive drug carriers was evaluated in this study. With the unique feature of the biocompatible PEC-silica hybrid particles and SCMs, they could be developed as drug carriers, biomimetic encapsulants, functional nanobioreactiotors, and so forth.

    目錄 摘要 I Abstract II 誌謝 III 第一章 緒論 1 第二章 文獻回顧 3 2.1 聚胺基酸之特性與應用價值 3 2.2 聚電解質複合材料 5 2.2.1 聚電解質複合物 5 2.2.2 聚電解質複合產物之型態分類與應用 6 2.2.3 聚電解質複合微胞之生物訊號(離子強度、酸鹼、還原電位、溫度)應答 6 2.3 生物礦物質合成及二氧化矽礦化作用 11 2.3.1 仿生合成之優勢 11 2.3.2 自然界常見之生物礦物質(碳酸鈣、磷酸鈣、二氧化矽、無機氧化物) 12 2.3.3 以人工合成之多肽為模板合成二氧化矽 14 2.4 交聯 16 2.4.1 微胞粒子之交聯 16 2.4.2 Genipin優點與交聯機制 21 第三章 實驗方法與儀器設備 24 3.1 實驗藥品 24 3.2 聚胺酸和聚丙烯酸(PAA)之合成 26 3.2.1 純化丙烯酸第三丁酯(tBA)單體 26 3.2.2 純化ATRP觸媒(CuBr) 26 3.2.3 利用ATRP聚合丙烯酸第三丁酯 26 3.2.4 去除聚丙烯酸第三丁酯保護基 27 3.2.5 利用NCA開環聚合合成PLL 27 將單體 28 3.2.6 聚胺基酸之保護基(R-group)去除 29 3.3 製備聚電解質複合粒子 29 3.4 製備交聯複合粒子 30 3.4.1 以Genipin交聯帶正電複合粒子 30 3.4.2 以Cystamine交聯帶負電複合粒子 30 3.5 礦化複合粒子之製備與應用 30 3.5.1 複合粒子之礦化反應與其酸鹼應答 30 3.5.2 礦化複合粒子之藥物釋放 31 3.6 複合粒子之藥物包覆實驗 31 3.7 特性分析與性質測試 31 3.7.1 核磁共振光譜儀 31 3.7.2 凝膠滲透層析儀 32 3.7.3 動態光散射粒徑分析儀 33 3.7.4 Zeta potential 34 3.7.5 穿透式電子顯微鏡 35 3.7.6 紅外線光譜儀 36 3.7.7 圓二色光譜儀 37 3.7.8 熱重分析儀 39 第四章 結果與討論 40 4.1 聚電解質之合成與分析 40 4.1.1 聚丙烯酸與聚賴胺酸之合成 40 4.1.2 聚丙烯酸與聚賴胺酸之分析 40 4.2 PLL/PAA複合粒子 42 4.2.1 組成重量百分比對PLL/PAA複合粒子帶電之影響 43 4.2.2 在純水中製備之PLL/PAA複合粒子之粒徑 44 4.2.3 鹽類對PLL/PAA複合粒子之影響 50 4.2.4 PLL/PAA複合粒子之構形和二級結構 53 4.3 聚電解質複合粒子之礦化作用 55 4.3.1 製備礦化複合粒子 55 4.3.2 礦化反應對複合粒子之粒徑影響 59 4.3.3 礦化複合粒子帶電之酸鹼應答 62 4.3.4 礦化複合粒子之構形與二級結構 65 4.3.5 礦化粒子之分析及有機/無機組成重量百分比 68 4.4 聚電解質複合粒子之交聯作用 69 4.4.1 製備交聯複合粒子 70 4.4.2 交聯複合粒子之粒徑與粒徑分布 71 4.4.3 交聯複合粒子之酸鹼應答 74 4.4.4 交聯粒子之分析 78 4.5 聚電解質複合粒子作為藥物載體之應用 83 4.5.1 複合粒子包覆率及粒徑變化 84 4.5.2 包藥複合粒子之交聯 86 第五章 結論 88 第六章 參考文獻 90   表目錄 Table.2- 1 雙功能反應劑與對應反應官能基76 17 Table.4- 1 聚電解質分子量與PDI分析 41 Table.4- 2複合粒子之礦化條件 58 Table.4- 3 複合粒子礦化反應之結果 60 Table.4- 4 在不同粒子濃度下的交聯結果 71 Table.4- 5 PLL50/PAA50_30%之藥物包覆結果 85 Table.4- 6 交聯複合粒子前後DLS分析 86   圖目錄 Fig.2- 1多肽之二級結構:a)random coil, b)α-helix, c)β-sheet3 3 Fig.2- 2 PLL二級結構在不同環境下之改變7 4 Fig.2- 3 多肽載體型態8 5 Fig.2- 4酸鹼應答造成複合粒子內體瓦解現象23 8 Fig.2- 5 (A) 具pH應答之化學鍵 (B) pH造成聚電解質帶電性轉變24 8 Fig.2- 6雙硫交聯劑在細胞中解交聯現象31 9 Fig.2- 7 (PiPrOx-b-PAA)在溫度高於Tc下之聚集效應36 10 Fig.2- 8 (A) 老鼠門牙之砝瑯柱狀結構、(B) 珍珠層中片狀混和結構37 12 Fig.2- 9 矽藻之礦化細胞壁結構45 13 Fig.2- 10 magnetotactic bacteria中磁性奈米粒子52 14 Fig.2- 11透過模板機制與相變化之二氧化矽形成示意圖53 15 Fig.2- 12官能基化學交聯反應76 17 Fig.2- 13 雙鍵官能基之光啟動交聯反應;黑點表示光起始劑76 19 Fig.2- 14 cinnamate、coumarin、thymine之光啟動環加成反應76 20 Fig.2- 15 矽氧烷縮合反應94 21 Fig.2- 16 4-(1-methylsilacyclobutyl) styrene共聚物結構94 21 Fig.2- 17 Genipin反應機制 23 Fig.3- 1 PAA合成步驟 27 Fig.3- 2 NCA製備流程 28 Fig.3- 3 Poly(z-L-lysine)合成圖 29 Fig.3- 4利用GPC 測量分子量 33 Fig.3- 8以圓二色光譜儀測定二級結構之圖形 38 Fig.4- 1 PtBA之NMR圖譜(in MeOD ) 41 Fig.4- 2 PtBA之GPC分析 42 Fig.4- 3 聚電解質複合粒子形成示意圖 43 Fig.4- 4 PLL/PAA複合粒子在純水下之Zeta Potential 44 Fig.4- 5純水中PAA50與不同鏈長PLL形成複合粒子粒徑 45 Fig.4- 6純水中PAA180與不同鏈長PLL形成複合粒子粒徑 46 Fig.4- 7 PLL50/PAA180在不同組成下DLS粒徑分布圖 46 Fig.4- 8 PLL100/PAA180在不同組成下DLS粒徑分布圖 47 Fig.4- 9 PLL250/PAA180在不同組成下DLS粒徑分布圖 48 Fig.4- 10純水中短鏈PAA50與不同鏈長之PLL形成複合粒子之粒徑分布 49 Fig.4- 11純水中長鏈PAA180與不同鏈長之PLL形成複合粒子之粒徑分布 49 Fig.4- 12 0.02N PBS Buffer中PAA180與不同鏈長之PLL形成複合粒子之粒徑 51 Fig.4- 13 0.02N PBS Buffer中短鏈PAA50與不同鏈長之PLL形成複合粒子之粒徑 51 Fig.4- 14 0.02N PBS Buffer中PAA180與不同鏈長之PLL形成複合粒子之粒徑分布 52 Fig.4- 15 0.02N PBS Buffer中PAA50與不同鏈長之PLL形成複合粒子之粒徑分布 52 Fig.4- 16 PLL50/PAA50_55%-0.02 N PBS 53 Fig.4- 17 PLL50/PAA50_55%-DI water 53 Fig.4- 18 PLL50/PAA50_70%-DI water 53 Fig.4- 19 PLL/PAA複合粒子二級結構分析 54 Fig.4- 20 PLL/PAA複合粒子之礦化作用 55 Fig.4- 21 PLL100/PAA50在0.02N PBS buffer中粒徑與帶電分析 57 Fig.4- 22 PLL100/PGA250於0.02N PBS buffer中粒徑與帶電分析 57 Fig.4- 23 PLL100/PSS2000於0.01N PBS buffer粒徑與帶電分析 57 Fig.4- 24 PLL100/PAA50礦化反應六小時之粒徑 60 Fig.4- 25 PLL100/PAA50礦化粒子粒徑分布圖 61 Fig.4- 26 PLL100/PSS2000礦化粒子粒徑分布圖 62 Fig.4- 27不同負電官能基礦化複合粒子之酸鹼應答 63 Fig.4- 28礦化複合粒子在不同重量百分比組成之酸鹼應答 64 Fig.4- 29礦化複合粒子在不同礦化時間下之酸鹼應答 64 Fig.4- 30交聯對礦化粒子酸鹼應答之影響 65 Fig.4- 31 PLL100/ PAA50_60%_礦化6小時之礦化粒子 66 Fig.4- 32 PLL100/ PAA50_60%_礦化1.5小時之礦化粒子 66 Fig.4- 33 PLL100/ PSS2000_40%_礦化3.5小時之礦化粒子 67 Fig.4- 34礦化粒子之IR分析 67 Fig.4- 35礦化粒子之二級結構 68 Fig.4- 36礦化粒子有機/無機組成百分比 69 Fig.4- 37以Genipin交聯帶正電複合粒子之PLL Shell 70 Fig.4- 38 以Cystamine交聯帶負電複合粒子之PAA Shell 70 Fig.4- 39 以Cystamine交聯PAA shell對負電複合粒子之粒徑影響 72 Fig.4- 40以Genipin交聯PLL shell對正電複合粒子之粒徑影響 73 Fig.4- 41 Cystamine交聯PAA Shell前後之粒徑分布圖 73 Fig.4- 42 Genipin交聯PLL Shell前後之粒徑分布圖 74 Fig.4- 43交聯帶負電粒子之帶電酸鹼應答 75 Fig.4- 44 負電交聯粒子粒徑酸鹼應答 76 Fig.4- 45交聯帶正電粒子之帶電酸鹼應答 76 Fig.4- 46正電交聯粒子粒徑酸鹼應答 77 Fig.4- 47正電交聯粒子酸鹼應答粒徑分布 77 Fig.4- 48交聯負電複合粒子之IR分析 79 Fig.4- 49交聯劑量對複合粒子帶電量的影響 79 Fig.4- 50以Genipin交聯PLL之UV特徵峰分析 80 Fig.4- 51 PLL50/PAA50_55% 81 Fig.4- 52 PLL50/PAA50_70% 81 Fig.4- 53 以Cystamine交聯PLL50/PAA50_55%之PAA Shell 81 Fig.4- 54以Genipin交聯PLL50/PAA50_70%之PLL Shell 81 Fig.4- 55 稀釋PLL/PAA複合粒子之粒徑分布圖 82 Fig.4- 56稀釋PLL/PAA交聯複合粒子粒徑分布圖 83 Fig.4- 57 包覆DOX之PLL50/PAA50_55%複合粒子 85 Fig.4- 58 包藥及交聯造成粒徑分布改變之DLS分析 87

    1. Lavasanifar, A.; Samuel, J.; Kwon, G. S., Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery. Advanced Drug Delivery Reviews 54(2), 169-190 (2002).
    2. Bae, Y.; Kataoka, K., Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Advanced Drug Delivery Reviews 61(10), 768-784 (2009).
    3. Carlsen, A.; Lecommandoux, S., Self-assembly of polypeptide-based block copolymer amphiphiles. Current Opinion in Colloid & Interface Science 14(5), 329-339 (2009).
    4. Xia, F.; Feng, L.; Wang, S.; Sun, T.; Song, W.; Jiang, W.; Jiang, L., Dual‐Responsive Surfaces That Switch between Superhydrophilicity and Superhydrophobicity. Advanced Materials 18(4), 432-436 (2006).
    5. Xia, F.; Ge, H.; Hou, Y.; Sun, T.; Chen, L.; Zhang, G.; Jiang, L., Multiresponsive surfaces change between superhydrophilicity and superhydrophobicity. Advanced Materials 19(18), 2520-2524 (2007).
    6. Miyashiro, T.; Goulian, M., High stimulus unmasks positive feedback in an autoregulated bacterial signaling circuit. Proceedings of the National Academy of Sciences 105(45), 17457-17462 (2008).
    7. Guo, Y.; Xia, F.; Xu, L.; Li, J.; Yang, W.; Jiang, L., Switchable wettability on cooperative dual-responsive poly-L-lysine surface. Langmuir 26(2), 1024-1028 (2009).
    8. Deming, T. J., Synthetic polypeptides for biomedical applications. Progress in Polymer Science 32(8-9), 858-875 (2007).
    9. Thunemann, A. F.; Muller, M.; Dautzenberg, H.; Joanny, J. F. O.; Lowen, H., Polyelectrolyte complexes. In Polyelectrolytes with Defined Molecular Architecture Ii, Schmidt, M., Ed. 2004; Vol. 166, pp 113-171.
    10. Thünemann, A. F.; Müller, M.; Dautzenberg, H.; Joanny, J.-F.; Löwen, H., Polyelectrolyte complexes. In Polyelectrolytes with defined molecular architecture II, Springer: 2004; pp 113-171.
    11. de la Torre, P. M.; Torrado, S.; Torrado, S., Interpolymer complexes of poly(acrylic acid) and chitosan: influence of the ionic hydrogel-forming medium. Biomaterials 24(8), 1459-1468 (2003).
    12. Sun, H.; Li, W.; Wu, L. X., Honeycomb-Patterned Films Fabricated by Self-Organization of DNA-Surfactant Complexes. Langmuir 25(18), 10466-10472 (2009).
    13. Kabanov, V. A.; Zezin, A. B.; Rogacheva, V. B.; Ryzhikov, S. V., Disproportionation of nonstoichiometric poly-electrolyte complexes in water-salt solutions. Dokl. Akad. Nauk SSSR 267(4), 862-865 (1982).
    14. Bakeev, K. N.; Izumrudov, V. A.; Kuchanov, S. I.; Zezin, A. B.; Kabanov, V. A., Kinetics and mechanism of the macromolecular exchange in a interpolyelectrolytic complex. Dokl. Akad. Nauk SSSR 300(1), 132-135 (1988).
    15. Harada, A.; Kataoka, K., Novel polyion complex micelles entrapping enzyme molecules in the core. 2. Characterization of the micelles prepared at nonstoichiometric mixing ratios. Langmuir 15(12), 4208-4212 (1999).
    16. Kawamura, A.; Harada, A.; Kono, K.; Kataoka, K., Self-assembled nano-bioreactor from block ionomers with elevated and stabilized enzymatic function. Bioconjug. Chem. 18(5), 1555-1559 (2007).
    17. Martin, G. R.; Jain, R. K., Noninvasive measurement of interstitial ph profiles in normal and neoplastic tissue using fluorescence ratio imaging microscopy. Cancer Res. 54(21), 5670-5674 (1994).
    18. Zhang, G. D.; Nishiyama, N.; Harada, A.; Jiang, D. L.; Aida, T.; Kataoka, K., PH-sensitive assembly of light-harvesting dendrimer zinc porphyrin bearing peripheral groups of primary amine with poly(ethylene glycol)-b-poly(aspartic acid) in aqueous solution. Macromolecules 36(4), 1304-1309 (2003).
    19. Fukushima, S.; Miyata, K.; Nishiyama, N.; Kanayama, N.; Yamasaki, Y.; Kataoka, K., PEGylated polyplex micelles from triblock catiomers with spatially ordered layering of condensed pDNA and buffering units for enhanced intracellular gene delivery. J. Am. Chem. Soc. 127(9), 2810-2811 (2005).
    20. Bae, Y.; Fukushima, S.; Harada, A.; Kataoka, K., Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change. Angewandte Chemie-International Edition 42(38), 4640-4643 (2003).
    21. Jeong, J. H.; Kim, S. W.; Park, T. G., Novel intracellular delivery system of antisense oligonucleotide by self-assembled hybrid micelles composed of DNA/PEG conjugate and cationic fusogenic peptide. Bioconjug. Chem. 14(2), 473-479 (2003).
    22. Lee, Y.; Fukushima, S.; Bae, Y.; Hiki, S.; Ishii, T.; Kataoka, K., A protein nanocarrier from charge-conversion polymer in response to endosomal pH. J. Am. Chem. Soc. 129(17), 5362-+ (2007).
    23. Falini, G.; Albeck, S.; Weiner, S.; Addadi, L., Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271(5245), 67-69 (1996).
    24. Bae, Y.; Fukushima, S.; Harada, A.; Kataoka, K., Design of environment‐sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change. Angewandte Chemie International Edition 42(38), 4640-4643 (2003).
    25. Russo, A.; Degraff, W.; Friedman, N.; Mitchell, J. B., Selective modulation of glutathione levels in human normal versus tumor-cells and subsequent differential response to chemotherapy drugs. Cancer Res. 46(6), 2845-2848 (1986).
    26. Lee, Y.; Mo, H.; Koo, H.; Park, J.-Y.; Cho, M. Y.; Jin, G.-w.; Park, J.-S., Visualization of the degradation of a disulfide polymer, linear poly(ethylenimine sulfide), for gene delivery. Bioconjug. Chem. 18(1), 13-18 (2007).
    27. Takae, S.; Miyata, K.; Oba, M.; Ishii, T.; Nishiyama, N.; Itaka, K.; Yamasaki, Y.; Koyama, H.; Kataoka, K., PEG-detachable polyplex micelles based on disulfide-linked block catiomers as bioresponsive nonviral gene vectors. J. Am. Chem. Soc. 130(18), 6001-6009 (2008).
    28. Kakizawa, Y.; Harada, A.; Kataoka, K., Glutathione-sensitive stabilization of block copolymer micelles composed of antisense DNA and thiolated poly(ethylene glycol)-block-poly(L-lysine): A potential carrier for systemic delivery of antisense DNA. Biomacromolecules 2(2), 491-497 (2001).
    29. Kakizawa, Y.; Harada, A.; Kataoka, K., Environment-sensitive stabilization of core-shell structured polyion complex micelle by reversible cross-linking of the core through disulfide bond. J. Am. Chem. Soc. 121(48), 11247-11248 (1999).
    30. Matsumoto, S.; Christie, R. J.; Nishiyama, N.; Miyata, K.; Ishii, A.; Oba, M.; Koyama, H.; Yamasaki, Y.; Kataoka, K., Environment-Responsive Block Copolymer Micelles with a Disulfide Cross-Linked Core for Enhanced siRNA Delivery. Biomacromolecules 10(1), 119-127 (2009).
    31. Lee, Y.; Mo, H.; Koo, H.; Park, J.-Y.; Cho, M. Y.; Jin, G.-w.; Park, J.-S., Visualization of the degradation of a disulfide polymer, linear poly (ethylenimine sulfide), for gene delivery. Bioconjug. Chem. 18(1), 13-18 (2007).
    32. Issels, R. D., Hyperthermia adds to chemotherapy. Eur. J. Cancer 44(17), 2546-2554 (2008).
    33. Sershen, S. R.; Westcott, S. L.; Halas, N. J.; West, J. L., Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. J. Biomed. Mater. Res. 51(3), 293-298 (2000).
    34. Annaka, M.; Morishita, K.; Okabe, S., Electrostatic self-assembly of neutral and polyelectrolyte block copolymers and oppositely charged surfactant. Journal of Physical Chemistry B 111(40), 11700-11707 (2007).
    35. Park, J.-S.; Akiyama, Y.; Yamasaki, Y.; Kataoka, K., Preparation and characterization of polyion complex micelles with a novel thermosensitive poly(2-isopropyl-2-oxazoline) shell via the complexation of oppositely charged block ionomers. Langmuir 23(1), 138-146 (2007).
    36. Park, J.-S.; Akiyama, Y.; Yamasaki, Y.; Kataoka, K., Preparation and characterization of polyion complex micelles with a novel thermosensitive poly (2-isopropyl-2-oxazoline) shell via the complexation of oppositely charged block ionomers. Langmuir 23(1), 138-146 (2007).
    37. Klaus, T.; Joerger, R.; Olsson, E.; Granqvist, C.-G., Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences 96(24), 13611-13614 (1999).
    38. Hincke, M. T.; Gautron, J.; Tsang, C. P. W.; McKee, M. D.; Nys, Y., Molecular cloning and ultrastructural localization of the core protein of an eggshell matrix proteoglycan, ovocleidin-116. J. Biol. Chem. 274(46), 32915-32923 (1999).
    39. Mann, K.; Siedler, F., The amino acid sequence of ovocleidin 17, a major protein of the avian eggshell calcified layer. Biochem. Mol. Biol. Int. 47(6), 997-1007 (1999).
    40. Gautron, J.; Hincke, M. T.; Mann, K.; Panheleux, M.; Bain, M.; McKee, M. D.; Solomon, S. E.; Nys, Y., Ovocalyxin-32, a novel chicken eggshell matrix protein - Isolation, amino acid sequencing, cloning, and immunocytochemical localization. J. Biol. Chem. 276(42), 39243-39252 (2001).
    41. Lakshminarayanan, R.; Kini, R. M.; Valiyaveettil, S., Investigation of the role of ansocalcin in the biomineralization in goose eggshell matrix. Proc. Natl. Acad. Sci. U. S. A. 99(8), 5155-5159 (2002).
    42. Lowenstam, H. A., Spicular morphology and mineralogy in some pyuridae (ascidiacea). Bulletin of Marine Science 45(2), 243-252 (1989).
    43. Weiner, S.; Wagner, H. D., The material bone: Structure mechanical function relations. Annual Review of Materials Science 28, 271-298 (1998).
    44. George, A.; Bannon, L.; Sabsay, B.; Dillon, J. W.; Malone, J.; Veis, A.; Jenkins, N. A.; Gilbert, D. J.; Copeland, N. G., The carboxyl-terminal domain of phosphophoryn contains unique extended triplet amino acid repeat sequences forming ordered carboxyl-phosphate interaction ridges that may be essential in the biomineralization process. J. Biol. Chem. 271(51), 32869-32873 (1996).
    45. Sarikaya, M., Biomimetics: materials fabrication through biology. Proceedings of the National Academy of Sciences 96(25), 14183-14185 (1999).
    46. Lowenstam, H. A., Goethite in radular teeth of recent marine gastropods. Science 137(3526), 279-& (1962).
    47. Lowensta.Ha, Lepidocrocite an apatite mineral and magnetite in teeth of chitons (polyplacophora). Science 156(3780), 1373-& (1967).
    48. Sumerel, J. L.; Yang, W. J.; Kisailus, D.; Weaver, J. C.; Choi, J. H.; Morse, D. E., Biocatalytically templated synthesis of titanium dioxide. Chemistry of Materials 15(25), 4804-4809 (2003).
    49. Dameron, C. T.; Reese, R. N.; Mehra, R. K.; Kortan, A. R.; Carroll, P. J.; Steigerwald, M. L.; Brus, L. E.; Winge, D. R., Biosynthesis of cadmium-sulfide quantum semiconductor crystallites. Nature 338(6216), 596-597 (1989).
    50. Lichtenegger, H. C.; Schoberl, T.; Bartl, M. H.; Waite, H.; Stucky, G. D., High abrasion resistance with sparse mineralization: Copper biomineral in worm jaws. Science 298(5592), 389-392 (2002).
    51. Klaus, T.; Joerger, R.; Olsson, E.; Granqvist, C. G., Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. U. S. A. 96(24), 13611-13614 (1999).
    52. Blakemore, R., Magnetotactic bacteria. Science 190(4212), 377-379 (1975).
    53. Schulz, A.; Wang, H.; van Rijn, P.; Böker, A., Synthetic inorganic materials by mimicking biomineralization processes using native and non-native protein functions. Journal of Materials Chemistry 21(47), 18903-18918 (2011).
    54. Kroeger, N.; Deutzmann, R.; Sumper, M., Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science (Washington D C) 286(5442), 1129-1132 (1999).
    55. Kroger, N.; Deutzmann, R.; Sumper, M., Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286(5442), 1129-1132 (1999).
    56. Kroeger, N.; Deutzmann, R.; Bergsdorf, C.; Sumper, M., Species-specific polyamines from diatoms control silica morphology. Proc. Natl. Acad. Sci. U. S. A. 97(26), 14133-14138 (2000).
    57. Kroger, N.; Lorenz, S.; Brunner, E.; Sumper, M., Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 298(5593), 584-586 (2002).
    58. Cha, J. N.; Shimizu, K.; Zhou, Y.; Christiansen, S. C.; Chmelka, B. F.; Stucky, G. D.; Morse, D. E., Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc. Natl. Acad. Sci. U. S. A. 96(2), 361-365 (1999).
    59. Tomczak, M. M.; Glawe, D. D.; Drummy, L. F.; Lawrence, C. G.; Stone, M. O.; Perry, C. C.; Pochan, D. J.; Deming, T. J.; Naik, R. R., Polypeptide-templated synthesis of hexagonal silica platelets. J. Am. Chem. Soc. 127(36), 12577-12582 (2005).
    60. Patwardhan, S. V.; Maheshwari, R.; Mukherjee, N.; Kiick, K. L.; Clarson, S. J., Conformation and assembly of polypeptide scaffolds in templating the synthesis of silica: An example of a polylysine macromolecular "switch". Biomacromolecules 7(2), 491-497 (2006).
    61. Cha, J. N.; Bartl, M. H.; Wong, M. S.; Popitsch, A.; Deming, T. J.; Stucky, G. D., Microcavity lasing from block peptide hierarchically assembled quantum dot spherical resonators. Nano Letters 3(7), 907-911 (2003).
    62. Wong, M. S.; Cha, J. N.; Choi, K. S.; Deming, T. J.; Stucky, G. D., Assembly of nanoparticles into hollow spheres using block copolypeptides. Nano Letters 2(6), 583-587 (2002).
    63. Murthy, V. S.; Cha, J. N.; Stucky, G. D.; Wong, M. S., Charge-driven flocculation of poly(L-lysine)-gold nanoparticle assemblies leading to hollow microspheres. J. Am. Chem. Soc. 126(16), 5292-5299 (2004).
    64. van Bommel, K. J. C.; Jung, J. H.; Shinkai, S., Poly(L-lysine) aggregates as templates for the formation of hollow silica spheres. Advanced Materials 13(19), 1472-+ (2001).
    65. Rana, R. K.; Murthy, V. S.; Yu, J.; Wong, M. S., Nanoparticle self-assembly of hierarchically ordered microcapsule structures. Advanced Materials 17(9), 1145-+ (2005).
    66. Shim, M. S.; Kwon, Y. J., Acid-transforming polypeptide micelles for targeted nonviral gene delivery. Biomaterials 31(12), 3404-3413 (2010).
    67. Huang, C.-q.; Hong, C.-y.; Pan, C.-y., Formation of flower-like aggregates from self-assembling of micelles with PEO shells and cross-linked polyacrylamide cores. Chinese Journal of Polymer Science 26(3), 341-352 (2008).
    68. Zhang, J.; Jiang, X.; Zhang, Y.; Li, Y.; Liu, S., Facile fabrication of reversible core cross-linked micelles possessing thermosensitive swellability. Macromolecules 40(25), 9125-9132 (2007).
    69. Duong, H. T. T.; Nguyen, T. L. U.; Stenzel, M. H., Micelles with surface conjugated RGD peptide and crosslinked polyurea core via RAFT polymerization. Polymer Chemistry 1(2), 171-182 (2010).
    70. Withey, A. B. J.; Chen, G.; Nguyen, T. L. U.; Stenzel, M. H., Macromolecular Cobalt Carbonyl Complexes Encapsulated in a Click-Cross-Linked Micelle Structure as a Nanoparticle To Deliver Cobalt Pharmaceuticals. Biomacromolecules 10(12), 3215-3226 (2009).
    71. Kim, J. S.; Youk, J. H., Preparation of core cross-linked micelles using a photo-cross-linking agent. Polymer 50(10), 2204-2208 (2009).
    72. Bontha, S.; Kabanov, A. V.; Bronich, T. K., Polymer micelles with cross-linked ionic cores for delivery of anticancer drugs. J. Control. Release 114(2), 163-174 (2006).
    73. Kim, J. O.; Nukolova, N. V.; Oberoi, H. S.; Kabanov, A. V.; Bronich, T. K., Block ionomer complex micelles with cross-linked cores for drug delivery. Polymer Science Series A 51(6), 708-718 (2009).
    74. Kim, J. O.; Kabanov, A. V.; Bronich, T. K., Polymer micelles with cross-linked polyanion core for delivery of a cationic drug doxorubicin. J. Control. Release 138(3), 197-204 (2009).
    75. Kim, J. O.; Sahay, G.; Kabanov, A. V.; Bronich, T. K., Polymeric Micelles with Ionic Cores Containing Biodegradable Cross-Links for Delivery of Chemotherapeutic Agents. Biomacromolecules 11(4), 919-926 (2010).
    76. O'Reilly, R. K.; Hawker, C. J.; Wooley, K. L., Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chemical Society Reviews 35(11), 1068-1083 (2006).
    77. Koo, A. N.; Lee, H. J.; Kim, S. E.; Chang, J. H.; Park, C.; Kim, C.; Park, J. H.; Lee, S. C., Disulfide-cross-linked PEG-poly(amino acid)s copolymer micelles for glutathione-mediated intracellular drug delivery. Chemical Communications (48), 6570-6572 (2008).
    78. Jiang, G., Preparation of Liquid-Filled Micelles Based on an Amphiphilic Triblock Copolymer. Journal of Applied Polymer Science 114(6), 3472-3478 (2009).
    79. Zhou, Y.; Jiang, K.; Chen, Y.; Liu, S., Gold nanoparticle-incorporated core and shell crosslinked micelles fabricated from thermoresponsive block copolymer of N-isopropylacrylamide and a novel primary-amine containing monomer. Journal of Polymer Science Part a-Polymer Chemistry 46(19), 6518-6531 (2008).
    80. He, L.; Read, E. S.; Armes, S. P.; Adams, D. J., Direct synthesis of controlled-structure primary amine-based methacrylic polymers by living radical polymerization. Macromolecules 40(13), 4429-4438 (2007).
    81. Xu, X.; Smith, A. E.; McCormick, C. L., Facile 'One-Pot' Preparation of Reversible, Disulfide-Containing Shell Cross-Linked Micelles from a RAFT-Synthesized, pH-Responsive Triblock Copolymer in Water at Room Temperature. Australian Journal of Chemistry 62(11), 1520-1527 (2009).
    82. Li, Y. T.; Lokitz, B. S.; Armes, S. P.; McCormick, C. L., Synthesis of reversible shell cross-linked micelles for controlled release of bioactive agents. Macromolecules 39(8), 2726-2728 (2006).
    83. Kim, J. S.; Youk, J. H., Encapsulation of nanomaterials within intermediary layer cross-linked micelles using a photo-cross-linking agent. Macromolecular Research 17(11), 926-930 (2009).
    84. Pilon, L. N.; Armes, S. P.; Findlay, P.; Rannard, S. P., Synthesis and characterisation of new shell cross-linked micelles with amine-functional coronas. European polymer journal 42(7), 1487-1498 (2006).
    85. Sun, G.; Hagooly, A.; Xu, J.; Nyström, A. M.; Li, Z.; Rossin, R.; Moore, D. A.; Wooley, K. L.; Welch, M. J., Facile, efficient approach to accomplish tunable chemistries and variable biodistributions for shell cross-linked nanoparticles. Biomacromolecules 9(7), 1997-2006 (2008).
    86. Hao, J.; Kwissa, M.; Pulendran, B.; Murthy, N., Peptide crosslinked micelles: a new strategy for the design and synthesis of peptide vaccines. International journal of nanomedicine 1(1), 97 (2006).
    87. Yang, T.-F.; Chen, C.-N.; Chen, M.-C.; Lai, C.-H.; Liang, H.-F.; Sung, H.-W., Shell-crosslinked Pluronic L121 micelles as a drug delivery vehicle. Biomaterials 28(4), 725-734 (2007).
    88. Iijima, M.; Nagasaki, Y.; Okada, T.; Kato, M.; Kataoka, K., Core-polymerized reactive micelles from heterotelechelic amphiphilic block copolymers. Macromolecules 32(4), 1140-1146 (1999).
    89. Lee, W.-C.; Li, Y.-C.; Chu, I. M., Amphiphilic poly(D,L-lactic acid)/poly(ethylene glycol)/poly(D,L-lactic acid) nanogels for controlled release of hydrophobic drugs. Macromol. Biosci. 6(10), 846-854 (2006).
    90. Jamroz-Piegza, M.; Walach, W.; Dworak, A.; Trzebicka, B., Polyether nanoparticles from covalently crosslinked copolymer micelles. J. Colloid Interface Sci. 325(1), 141-148 (2008).
    91. Yusa, S.-i.; Sugahara, M.; Endo, T.; Morishima, Y., Preparation and Characterization of a pH-Responsive Nanogel Based on a Photo-Cross-Linked Micelle Formed From Block Copolymers with Controlled Structure. Langmuir 25(9), 5258-5265 (2009).
    92. Shi, D.; Matsusaki, M.; Akashi, M., Photo-Cross-Linking Induces Size Change and Stealth Properties of Water-Dispersible Cinnamic Acid Derivative Nanoparticles. Bioconjug. Chem. 20(10), 1917-1923 (2009).
    93. Saito, K.; Ingalls, L. R.; Lee, J.; Warner, J. C., Core-bound polymeric micellar system based on photocrosslinking of thymine. Chemical Communications (24), 2503-2505 (2007).
    94. Matsumoto, K.; Hasegawa, H.; Matsuoka, H., Synthesis of sodium-polystyrenesulfonate-grafted nanoparticles by core-cross-linking of block copolymer micelles. Tetrahedron 60(34), 7197-7204 (2004).
    95. Du, J. Z.; Chen, Y. M., Hairy nanospheres by gelation of reactive block copolymer micelles. Macromolecular Rapid Communications 26(6), 491-494 (2005).
    96. Yang, Z.; Zheng, S.; Harrison, W. J.; Harder, J.; Wen, X.; Gelovani, J. G.; Qiao, A.; Li, C., Long-circulating near-infrared fluorescence core-cross-linked polymeric micelles: Synthesis, characterization, and dual nuclear/optical imaging. Biomacromolecules 8(11), 3422-3428 (2007).
    97. Matsumoto, K.; Kage, S.; Matsuoka, H., Synthesis of water-dispersible, fluorinated particles with grafting sulfonate chains by the core crosslinking of block copolymer micelles. Journal of Polymer Science Part a-Polymer Chemistry 45(7), 1316-1323 (2007).
    98. Langmaier, F.; Mládek, M.; Mokrejš, P., Hydrogels of collagen hydrolysate cross-linked with dialdehyde starch. Journal of thermal analysis and calorimetry 98(3), 807-812 (2009).
    99. Nishi, C.; Nakajima, N.; Ikada, Y., In-vitro evaluation of cytotoxicity of diepoxy compounds used for biomaterial modification. J. Biomed. Mater. Res. 29(7), 829-834 (1995).
    100. Schoen, F. J.; Harasaki, H.; Kim, K. M.; Anderson, H. C.; Levy, R. J., Biomaterial-associated calcification - pathology, mechanisms, and strategies for prevention. Journal of Biomedical Materials Research-Applied Biomaterials 22(A1), 11-36 (1988).
    101. Nickerson, M. T.; Farnworth, R.; Wagar, E.; Hodge, S. M.; Rousseau, D.; Paulson, A. T., Some physical and microstructural properties of genipin-crosslinked gelatin-maltodextrin hydrogels. Int. J. Biol. Macromol. 38(1), 40-44 (2006).
    102. Jan, J.-S.; Chen, P.-S.; Hsieh, P.-L.; Chen, B.-Y., Silicification of Genipin-Cross-Linked Polypeptide Hydrogels Toward Biohybrid Materials and Mesoporous Oxides. ACS applied materials & interfaces 4(12), 6865-6874 (2012).
    103. Petruczok, C. D.; Barlow, R. F.; Shipp, D. A., Synthesis of poly (tert‐butyl acrylate‐block‐vinyl acetate) copolymers by combining ATRP and RAFT polymerizations. Journal of Polymer Science Part A: Polymer Chemistry 46(21), 7200-7206 (2008).
    104. Voets, I. K.; de Keizer, A.; Cohen Stuart, M. A., Complex coacervate core micelles. Adv. Colloid Interface Sci. 147, 300-318 (2009).
    105. Shinoda, K.; Hayashi, T.; Yoshida, T.; Sakai, K.; Nakajima, A., Complex formation of poly-L-lysine with poly (acrylic acid). Polymer Journal 8(2), 202-207 (1976).

    下載圖示 校內:2018-08-09公開
    校外:2018-08-09公開
    QR CODE